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Abstract

This work investigates e↵ective search and resource collection algorithms for

swarms. Deterministic spiral algorithms and Lévy search processes have been shown

to be optimal for single searchers (Baeza-Yates et al., 1993; Viswanathan et al.,

1996). By generalising these approaches to swarms and measuring the e↵ectiveness

of the resulting search patterns in computer models, we find that the intensity-extent

trade-o↵, formalised as the fractal dimension of the search pattern, can be used to

adapt search to common challenges in swarm search.

Search extent and intensity lie on a continuum: more intensive patterns search

thoroughly in the local area, while extensive patterns cover more area but may miss

targets nearby. We show that the most e�cient trade-o↵ between search intensity

and extent for swarms depends strongly on the distribution of targets, swarm size
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and the rate of collision among searchers (Fricke et al., 2016a). The optimal trade-o↵

is also influenced by the target detection error rate. The search can, therefore, be

tuned to match conditions common in real-world robot search tasks.

We also demonstrate that our swarm spiral algorithm is an e↵ective strategy for

resource collection (Fricke et al., 2016b). Deterministic spiral search strategies for

single searchers have been considered unsuitable in the presence of localisation error

(Reynolds et al., 2007), but the swarm algorithm performs well even in the presence

of localisation error. Since the spiral strategy is e↵ective and easily analysed it makes

an ideal benchmark against which to compare stochastic search processes.

Collective search by T cells is a critical component of the adaptive immune re-

sponse. We characterise T cell search patterns and find that they balance the need

to search extensively for rare antigen while maintaining local contacts with antigen-

presenting cells. We perform two analyses that demonstrate that T cells interact with

their environment during search (Fricke et al., 2013, 2015, 2016c). We also measure

the interaction between T cells and Dendritic cells using mutual information and

demonstrate non-random spatial association between T cells and their targets.
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< ... > Angle brackets are used to denote the ensemble average.

U(0, 1) Uniform probability variate generator on the unit interval, I.

N (µ, �) Gaussian probability variate generator with mean = µ (not to be

confused with the Lévy exponent µ) and standard deviation = �.

H The Hausdor↵ fractal dimension. A measure of the fraction of points

in some space that belong to a particular point set. We use this to

measure the fraction of a search space that is visited by a particular

search strategy.

H The Hopkins index. A measure of how far from uniformly distrib-

uted points are.

µ The exponent of a power law PDF of step lengths. Sometimes called

the Lévy exponent. H = µ� 1.

↵ Power law exponent of MSD.

I The unit interval [0, 1]
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2PM Two-photon microscopy. Technology that allows cells to be tagged

with molecular dyes that fluoresce at narrow wavelengths when ex-

cited by laser light. 2PM is used to image T cells and DCs. We use

wavelengths in the green and red spectrums to di↵erentiate di↵erent

populations of cells

95% CI [a, b] 95% confidence interval. A measure of the fraction of experiment

repetitions that are expected to fall within the indicated range, [a,b],

of values. Frequently used to measure the statistical significance of

our results.

ACRW Adaptive correlated random walk. A random movement model in

which the degree of correlation between steps is influenced by in-

formation about the environment. The CPFA employs an ACRW.

Activated T cell Once a T cell’s TCR binds to antigen the T cell activates. Ac-

tivated T cells undergo clonal expansion and seek out and destroy

cells bearing the antigen that bound to the TCR.

Antigen Chemical markers (typically proteins) that allow the immune system

to distinguish cells belonging to self from non-self. The detection

of antigen indicative of disease is the foundation of the immune

response.

AICc Corrected Akiake information criterion. An information theoretic

goodness of fit measure based on MLE. The AICc reports the rel-

ative information lost when representing the observed data by stat-

istical models. The corrected version penalises models with more
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parameters. The AICc is asymptotically equivalent to leave-one-out

cross validation (Stone, 1977).

ANOVA Analysis of variance. A statistical tool used to measure the amount

of variance in an response variable that can be attributed to one or

more input variables. We use this analysis to measure the contribu-

tion of experimental factors to the result. For example, ANOVA can

measure the degree to which the best search strategy is influenced

by the number of searchers.

April Tag These visual codes are used as target markers. April tags provide

information to the robot about target distance and orientation in

space.

ARGoS A swarm robot simulator. ARGoS is similar to Gazebo but runs

much faster at the expense of realism. In this work we use the 2D

physics engine dyn2d.

BRW Biased random walk. A random movement model in which there is

a global directional bias to turning angles. Not to be confused with

a CRW.

CDF Cumulative distribution function. The CDF for a value x is the sum

of the PDF for all values less than or equal to x. We fit models to

empirical CDFs rather than PDFs.

CCDF Complementary cumulative distribution function. Also known as

the hazard survival function and the first passage time density.
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Cognate When antigen and TCR are cognate the antigen and TCR are cap-

able of binding. When TCR and antigen bind cell signalling may be

initiated that activates the T cell.

CPF Central place foraging. A common task performed by groups of

organisms is the discovery and transportation of food items to a

central location. Transportation of resources, or other materials, to

a depot is also of interest to developers of robot swarms.

CPFA Central place foraging algorithm. A desert harvester ant inspired

algorithm for the collection of resources. (Hecker and Moses, 2015)

CRW Correlated random walk. A random movement pattern in which the

turning angle between steps is not independent. This is a commonly

used model of animal movement patterns that allows MSD to exceed

that of Brownian motion. Also called a persistent random walk

(PRW)

DC Dendritic cell. Dentritic cells transport antigen to lymph nodes

where it is displayed on their membranes. Dentritic cells are irregu-

lar in shape and are characterised by mobile antigen presenting pro-

trusions. These cells are between 10 and 20 µm in diameter, though

this measurement is complicated by their irregular and changeable

shape.

DDSA The deterministic spiral algorithm. A square spiral search strategy

for swarms of robots.
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DMEM Dulbecco’s modified eagle medium. A commercial solution used to

keep cells alive ex vivo.

ex vivo Organs removed and kept viable for cells outside the host body are

termed ex vivo.

EKF Extended Kalman filter. A method of integrating sensor data that

uses a dynamic noise covariance matrix to weight inputs.

FRC Fibroblastic reticular cell. FRCs form a network within lymph

nodes. The degree to which the FRC network influences T cell

and DC motility and search patterns is under investigation by im-

munologists. As of this writing no consensus has emerged on the

role of the FRC in guiding T cell-DC interaction.

GA Genetic algorithm. An evolutionary optimisation technique in which

a population of solutions navigate an optimality landscape using bio-

logically inspired mechanisms such as gene crossover and mutation.

Gazebo An environment closely tied to ROS that allows the simulation of

robots. In this work we used Gazebo 2.0 and the Open Dynamics

Physics Engine (ODE).

GPS Global positioning system.

HEV High endothelial venule. Vessels within the lymph node that allow

migration of T cells in and out of lymph nodes.

Markovian AMarkovian process is memoryless. In the context of search Brownian

Motion and Lévy search are characterised by turning angles that

xxi



www.manaraa.com

Glossary

are Markovian, that is the turning angle is not related to the previ-

ous turning angles. In contrast correlated random walks have non-

Markovian turning angles. We determine whether observed search

patterns are Markovian using a the velocity autocorrelation func-

tion. Also known as the Markov property.

Lévy search Lévy walks and Lévy flights are scale free fractal spacial distribu-

tions proposed by Mandelbrot (1983) and Shlesinger and Klafter

(1986) and popularised as models of optimal search in an ecological

context in Viswanathan et al. (1996). They were proposed as a

description of T cell movement in the brain in Harris et al. (2012).

LN Lymph node. Lymph nodes are where dendritic cells display antigen

gathered from the host. Näıve T cells search lymph nodes until ac-

tivated by cognate antigen. LNs are strategically placed throughout

the body with tissues in each region of the body draining to partic-

ular lymph nodes. Lymph nodes are connected to one another via

lymphatic vessels.

LogMCRW Lognormal modulated correlated random walk. A type of random

walk in which there is a correlation in turning angles and a lognormal

distribution of step lengths. We use this model to describe T cell

motility in Lymph Nodes.

MLE Maximum likelihood estimation. A model parameter estimation

technique especially well suited to selection of parameters for non-

linear models such as power laws. Intuitively maximum likelihood
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estimation chooses the parameters that maximize the likelihood of

drawing a particular sample. The likelihood function is the given

by the sum of the probabilities of observing the input conditioned

on the candidate parameter. Optimisation techniques are used to

find the candidate parameter that maximises the likelihood func-

tion. Note that the likelihood function is not a probability since its

sum over all input can exceed 1.

MSD Mean squared displacement. We use MSD as a measure of how

quickly a search pattern moves a searcher away from its starting

point, and it is therefore one of the ways we measure the intensity-

extent tradeo↵.

MSE Mean squared error. A common goodness of fit measure which uses

the expected value of the square of the di↵erence between model

values and observed values. MSE methods are equivalent to MLE

for linear fits when the error is normally distributed but are much

faster to compute.

Näıve T cell T cells leave the thymus and search for cognate antigen. Before a T

cell’s TRC binds to cognate antigen the T cell is called näıve.

QR Quick response code. These visual codes are used as targets for the

iAnt robot which does not have a gripper.

Reality gap A common problem in robotics is the development of robot al-

gorithms in simulation that do not translate well to real robots.

Simulations enable the evaluation of algorithms many times faster
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than would be possible with real robots, but cannot completely re-

produce the complexity of real environments interacting with em-

bodied robots. A robot interacting with its environment is in itself

a complex system with potentially non-linear feedback between ac-

tuators, environment, and sensors. This makes modelling di�cult,

especially in the case of swarms of robots which have the added

complication of robot-robot interactions.

TCR T cell receptor. A binding site on the membranes of T cells which

allows cognate antigen to dock and initiate a signal cascade within

the T cell.

PDF Probability density function. A function that maps outcome of an

event to its probability, resulting in a probability distribution for a

random variable. We use PDFs to model stochastic processes such

as random search strategies.

ROS The Robot Operating System. This is the software platform pro-

duced by the Open Robotics Software Foundation that we use to

develop the software for the Swarmathon robots. In this work we

use the Indigo Igloo release of ROS.

Search extent The rate at which a searcher increases its distance from it’s starting

point independent of its velocity. For a given time interval search

extent has an inverse relationship to search intensity. MSD is a

measure of extent.
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Search intensity The fraction of points in a space observed by a searcher in a fixed

time period. For a given time interval search extent has an inverse

relationship to search intensity. H is a measure of intensity.

Systems Biology Systems biology is the study of biology as a complex system, that

is, as a system of interacting components that produce emergent

behaviour. The system may be examined at the level of molecules,

cells, organisms, species, or include multiple levels. The study of

search in the immune system and central place foraging (CPF) by

ant colonies are examples of systems biology.
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Chapter 1

Introduction

Search is a fundamental process in a wide variety of natural and engineered systems.

For example, animals search for food and mates, and computer programs are designed

to search for solutions to problems. Some search processes involve multiple agents

that cooperate to search for targets. For example, ants in a colony communicate as

they search for seeds, the cells of the immune system collectively search for pathogens,

and robots in a swarm may be designed to collectively search for targets.

We study systems that use search strategies that do not rely on prior knowledge

of the location of targets. Such strategies fall into two types of search: stochastic

and deterministic. For individual searchers, spiral search has been shown to be

an optimal deterministic search strategy (Baeza-Yates et al., 1993; Skubch, 2012).

Physicists have shown that a stochastic search strategy called Lévy search is optimal

for systems given certain simplifying assumptions (Viswanathan et al., 1996). The

optimal search strategy for swarms of searchers in finite areas with a limited number

of consumable targets is not known.
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Our goal in this dissertation is to develop a deeper understanding of swarm search

processes using a combination of approaches: 1) quantitative analysis of the search

patterns of swarms of T cells, and 2) development of new algorithms for robot swarms

carrying out a resource collection task.

1.1 Lost Key Analogy

To build intuition about some of the issues involved with swarm search, consider

a familiar problem: As you are leaving your house for work, you realise that you

have misplaced your keys. As you search the house, you may choose to follow a

deterministic search pattern that is guaranteed to locate the keys but will take a very

long time to complete. Alternatively, you could follow a stochastic search pattern

that maximises the probability of finding the keys quickly, but with no guarantee

that the keys will be found at all.

You may have information about likely places to search; if an initial search of those

locations is unsuccessful, you might choose new locations to search at random. Some

may choose to search each room of the house thoroughly, perhaps deterministically,

until the keys are found. Others may move quickly from room to room, giving

each a cursory glance. The e↵ectiveness of the search depends on the probability

distribution of the location of the keys and the probability of detecting the keys if

they are present.

If the probability of finding the keys at locations that are close to each another is

highly correlated, then a thorough intensive search of those locations may be a good

strategy. On the other hand, if the probability of finding a set of keys is uniform

across all locations in the house, then a more extensive search may be warranted.

2
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Because it is easy to miss a small and inconspicuous set of keys, an intense search in

several areas, rather than a more extensive cursory search, could be e↵ective.

When searching for something that is lost, we will often re-examine previously

searched areas in case the object was missed on the first pass. Losing your keys can

become a major event, with family members enlisted to help find them (attendant

to a reward). The addition of multiple searchers introduces a new optimisation

problem: How should the house be partitioned among the searchers? It would seem

obvious that the searchers should be divided evenly across the house. However,

young children may have a high error rate for key detection, so searching together in

small groups could decrease the probability of a false negative.

Finally, in the enthusiasm of children trying to find the keys (and motivated

by the promise of a reward), they may all decide to search the nearest areas first.

Assigning multiple people to search the same area can be productive if the keys are

hard to see, but may also cause problems due to crowding. Search with noisy sensors,

limited time, little prior knowledge about target locations, and a high likelihood of

collision with other searchers presents a complex optimisation problem.

This analogy highlights the factors that impact search that we address here: tar-

get detection error, multiple searchers, and varying target configurations. To be

e↵ective, robot swarms must be e�cient in the presence of these factors. We show

how these factors influence the search performance of the distributed deterministic

spiral algorithm (DDSA) and the adaptable Lévy search algorithm (ALSA). A re-

curring theme in this work is the trade-o↵ between intensity and extent following

Méndez et al. (2013). Search extent and intensity lie on a continuum: more in-

tensive patterns search thoroughly in the local area, while extensive patterns cover
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more area, but may miss targets nearby. We use the fractal dimension of the search

pattern as a convenient way to measure the intensity vs. extensiveness of search.

1.2 Relationship to Breadth-First and Depth-First search

There are similarities between the extent vs. intensity trade-o↵ and the breadth-first

search vs. depth-first search trade-o↵. When searching a tree, the trade-o↵ depends

on whether the best solutions tend to be localised to a few branches or distributed

widely across many branches, and whether they are common or rare. Assuming that

a solution-space tree is organised such that related solutions exist in the same subtree,

deep nodes can be thought of as near in space to the current location. Choosing to

traverse nodes using a depth first search is analogous to intensive spatial search, and

breadth first search is analogous to extensive spatial search.

Each search technique has advantages, if the solutions are clustered in one branch

depth-first search will be able to exploit the locality of solutions. If all of the solutions

are close together, significant time may be wasted exploring subtrees that contain no

solutions. If solutions are spread at random throughout the search tree breadth-first

search may be more successful. The addition of a heuristic (the A* algorithm, for

example) can reduce the time taken to discover the desired solution by choosing how

often to visit related solutions (Hart et al., 1968). This is essentially an algorithm to

balance the intensity vs. extent of search.

In spatial search, exploring areas far away from the start location incurs high

travel time costs but the areas are unlikely to have been searched by other agents.

Nearby areas are likely to have been visited by other members of the swarm but travel

costs are small. This suggests a parallel between the exploit vs. explore trade-o↵ and
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the k-armed bandit problem (Robbins, 1985), in which a gambler must decide on the

proper allocation of time to either explore the environment to gain information about

regions in solution space with a potential high pay-o↵, or exploit resources already

discovered. For the k-armed bandit problem the trade-o↵ is between certainty and

risk, in swarm spatial search the challenge is to balance travel cost vs. oversampling.

Decades of research have found ways to balance depth first vs breadth first search

and the explore-exploit trade o↵. The explore-exploit trade-o↵ governs whether to

make use of known resources or spend time to discover unknown, but potentially more

valuable resources. This trade-o↵ is a recurring theme in complex systems science

and provides a framework for approaching many disparate systems (Shalizi, 2006).

This dissertation is an extension of that work applied to spatial search problems. Our

goal is to reveal how the extent vs. intensity trade o↵ depends upon the distribution

of targets, the number of searchers, and the collision rate of searchers as swarms of

agents conduct searches in physical space

1.3 Spatial Search in Two Swarm Systems

We study search in two swarm systems: T cells searching for pathogens in lymph

nodes and robots searching for targets in a bounded 2-dimensional space. Though

these systems seem unrelated, the underlying search patterns can be analysed in

similar ways.
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Figure 1.1: T cell-Dendritic Cell Interaction Schematic. DCs patrol tissues in search
of antigen. Discovered antigen is brought to LNs, a confined space in which T cells
search for antigen-bearing DCs. When T cells detect cognate antigen they activate
and may eventually proliferate and move to peripheral tissue. These T cells will seek
out and destroy cells displaying the antigen that their clonal ancestors detected in
the lymph node.

1.3.1 Search in Immunology

We investigate the spatial patterns of T cells searching for dendritic cells (DCs)

in lymph nodes (LNs) and we measure how quickly T cells find their DC targets

given di↵erent distributions of targets and di↵erent requirements for how many and

how often T cells need to contact DC targets to complete their search. We choose

this system because we are interested in search where recruitment does not appear to

guide searchers. Quantitatively characterising the stochastic search of T cells informs

our understanding of a crucial part of the adaptive immune response, and provides

a naturally-occurring model of swarm search.
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This dissertation characterises the movement patterns of näıve T cell swarms

searching LNs and proposes the E↵ective Immune Search hypothesis, analogous to

Optimal Foraging Theory (Krebs, 1978; Stephens and Krebs, 1986). The E↵ective

Immune Search hypothesis proposes that a fast immune response confers a fitness

advantage on its host. Therefore, we expect T cells to have evolved patterns of

search that minimise pathogen detection time. We specifically test whether T cell

search patterns find targets quickly given di↵erent spatial distributions, densities and

required contact rates with DCs.

1.3.2 Search and Foraging in Swarm Robotics

Robot swarms typically consist of many small, relatively simple and inexpensive

robot agents that work collectively towards some goal. A major research challenge

is the development of robot swarm systems that allow e↵ective navigation through

complex real-world environments without centralised control (Winfield et al., 2005;

Hecker and Moses, 2015), but there is a considerable lack of adaptable, scalable, and

robust search algorithms to meet this challenge (Winfield, 2009; Brambilla et al.,

2013). Meeting this challenge has implications for other computing systems where

agents work in parallel in the physical environment, for example embedded sensor

networks and the Internet of Things.

Many real-world applications for robot swarms require the detection and collec-

tion of targets, including planetary surveys (Fink et al., 2005), land and sea mine

clearance (Weber, 1995), pollution mapping (Hu et al., 2011), search and rescue (Birk

and Carpin, 2006; Goodrich et al., 2008), military applications (Love et al., 2015),

and agricultural pest control (Tamura and Naruse, 2014). Central-place foraging
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applications, which require targets to be transported to a central collection point

(Winfield, 2009), include crop harvesting (Bac et al., 2014) and planetary resource

collection (Ramsey, 2015).

We study the e↵ectiveness of novel search strategies for robot swarms in simula-

tion. The simulations we use are specifically designed to model the behaviour and

capabilities of the iAnt robots developed in our lab (Hecker and Moses, 2015). Using

simulations allows the systematic manipulations of a variety of relevant parameters,

including: target detection error rates, target distributions, and the presence or ab-

sence of collisions. Simulations have also allowed us to test search strategies in search

areas that vary from 100m2 to 1 km2 with many more robots than we have been able

to build in hardware. We use two simulation testbeds: ARGoS which allows simula-

tion using a physics engine, and our own simulation software that allows thousands

of experiments to be conducted quickly in order to rapidly evolve parameters for

ALSA.

We test the ALSA and DDSA search algorithms in hardware using the robot oper-

ating system (ROS). The robots we tested our algorithms in were built in our lab for

the UNM-NASA swarm robotics challenge (Ramsey, 2015). These tests demonstrate

that the algorithms we designed can run successfully in real robot swarms.

1.4 The Role of Simulation

Immune systems and robot swarms are both complex systems (Holland, 1992; Hofmeyr

and Forrest, 2000; Winfield, 2009). Theoretical approaches to characterising search

have been fruitful in generating bounds for ideal cases (Stone, 1975; Viswanathan
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et al., 1999; Chechkin et al., 2008), but these formal mathematical models tend to

be simplified, often assuming infinite 1-dimensional space and time.

Following Axelrod (1997), computer simulations provide an alternative ‘third

way of science’ that allows more realistic finite-systems to be explored. Computer

simulation also allows us to ask ‘what if?’ questions that may not be feasible to test

in physical robots or biological systems. Accordingly, this work uses computational

simulations to analyse the e�ciency of di↵erent swarm search behaviours under a

variety of conditions for both robots and T cells.

Swarms of agents searching for targets will be adaptive to the presence of other

agents, through collisions, oversampling, and the distribution of undiscovered and

discovered targets. These local interactions and feedback loops introduce non-linearities

that make the application of purely analytical approaches di�cult. The swarms we

are interested in here are on the order of a few dozens to hundreds of agents. Analyt-

ical methods have been successful at describing the behaviour of a single agent,where

there are no complex interactions with other agents modifying the search space, and

for systems with very large numbers of agents, where interactions tend to cancel

one another out. For smaller swarms individual interactions are significant for the

behaviour of the whole and so must be modelled explicitly.

1.5 Organisation and Contributions

In Chapter 3, using computer simulations, we identify three distinct factors that

contribute to increasing T cell search e�ciency: 1) a lognormal distribution of step

lengths, 2) motion that is directionally persistent over short time scales, and 3)

heterogeneity in movement patterns. Furthermore, we show that T cells move dif-
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ferently in specific frequently visited locations that we call hotspots within lymph

nodes, suggesting that T cells change their movement in response to the lymph node

environment.

Our analysis of random search strategies in lymph nodes is predicated on the

assumption that nave T cells are not guided to target DCs through long range in-

teractions. There are several proposed mechanisms for guidance of näıve T cells in

LNs. In the presence of guidance by the environment we would expect there to be a

co-localization of T cells and DCs to a degree greater than that expected by chance.

In Chapter 4 we present a method using information theory to measure the degree

of co-localization observed in lymph nodes in order to resolve this question (Munoz

et al., 2014a; Donovan and Lythe, 2016). This method is applied to two-photon

microscopy (2PM) images of T cells searching for DCs.

In Chapter 5 we use a simulated robot swarm to evaluate the e↵ectiveness of a

Lévy strategy applied to a free search task. In free search targets must be located, but

there is no additional requirement that targets be transported to another location.

We map the relationship between search parameters and target distributions in the

absence of collisions. We show that the intensity-extent trade-o↵ depends on the

distribution of targets and but only weakly on the number of searchers.

We develop the distributed deterministic spiral algorithm (DDSA) in Chapter

6, as a benchmark algorithm that generalises a single searcher spiral to a swarm of

robots. Biologically inspired search algorithms are di�cult to analyse. Comparison

with a deterministic algorithm provides an easily analysed baseline. We find that the

DDSA is e↵ective for smaller swarms but a stochastic ant-inspired algorithm, which

reduces robot crowding, is more e↵ective for larger swarms.
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Surprisingly, localisation error does not impact the search e�ciency of the de-

terministic spiral as much as the stochastic algorithms we tested. The explanation

highlights the dependence of all the foraging algorithms that we have designed on

site fidelity. Site fidelity causes searchers to return to areas where they last found

targets, allowing them to exploit heterogeneity in the target distribution. When site

fidelity fails due to localisation error, stochastic algorithms are adversely e↵ected.

The DDSA systematically sweeps an incrementally expanding area and so does not

rely on site fidelity to rediscover clusters of targets.

In Chapter 7, we present the adaptable Lévy search algorithm (ALSA). ALSA

allows the selection of the the Hausdor↵ fractal dimension (H) through the Lévy

exponent, µ. We analyse the performance of ALSA under a variety of experimental

conditions, such as varying the boundary conditions, the size of the search area, and

allowing collisions. We use ARGoS to provide accurate modelling of collisions and

robot dynamics.

We find that in the presence of target-detection error, increasing search intensity

makes search more e�cient. Larger swarms benefit from increased extent, which

reduces collisions and oversampling. Increasing the extent of search is also beneficial

when targets are widely separated. The optimal intensity-extent trade-o↵ is influ-

enced by the configuration of targets, though the direction of the trade-o↵ depends

on the relationship between the search boundary and the region within which targets

are placed.

We discover that search intensity increases with the local target density. This is a

natural result of searcher reorientation when targets are encountered. This feedback

leads to an emergent and dynamic coupling between the intensity-extent trade-o↵

and the local target distribution, resulting in increased e�ciency.
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Together these chapters describe how the intensity-extent trade-o↵ can be used to

understand natural search systems and design e↵ective search strategies for a variety

of realistic conditions.
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Background

The dominant spatial search strategies can be grouped into three categories: ran-

dom-search strategies such as correlated random-walks, Brownian motion, and Lévy

flights; Bayesian approaches that use a prior model of target locations; and determ-

inistic search strategies. The existing body of work on search processes can altern-

atively be divided up by the field in which they originated: physics, systems biology

and ecology, and operations research. Hybrid search strategies also exist. Random

environments can give rise to stochastic movement patterns even for deterministic

agents. This aspect of movement is particularly important to our understanding of T

cell movement in lymph nodes (LNs). (Hughes, 1996) provides a thorough analysis

of movement in stochastic environments, as opposed to intrinsic random motion.

Search is well understood and characterised for single robots, and there are math-

ematical results for multiple searchers (primarily resulting from the statistical mech-

anics of reaction equations (Krapivsky et al., 2010), animals foraging in social groups

(Giraldeau and Caraco, 2000), the intersection of these fields (Viswanathan et al.,

2011; Méndez et al., 2013)), and in operations research (Stone, 1975). Stone laid the
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foundation for optimal search following a Bayesian approach using Lagrange multi-

pliers. The theory of optimal search laid out by Stone and his successors has two

requirements: 1) the probability distribution of target placement is known to the

searcher, 2) the conditional probability of finding a target in a particular location

given the amount of time spent looking in that location is also known to the searcher.

We confine our work to that in which the priors are unknown to the searcher, and

so the Bayesian approach is not applicable.

Optimal search is a central problem in operations research. During World War

II the Anti-Submarine Warfare Operations Research Group of the US Navy devoted

significant resources to the development of optimal search patterns. The resulting

algorithms are used to assist the US coastguard in planning search and rescue and

interdiction e↵orts. Famous examples of the application of these methods to real-

world problems include the search for an atomic bomb lost in the ocean in 1966 and

the submarine Scorpion lost in 1968 (Stone, 1975). Trummel and Weisinger (1986)

showed that optimising the probability of finding a target in limited time is NP-

complete.

Ecologists in the 1960s hypothesised that natural selection acting on animals for-

aging for food would result in strategies that maximise caloric intake and therefore

more e�cient search strategies. This body of work became known as Optimal For-

aging Theory (Krebs, 1978; Stephens and Krebs, 1986). For example, the marginal

value theorem describes the optimal rate at which foragers leave a depleting patch

of resources to search for a fresh patch (Charnov, 1976). Central place foraging

theory extends optimal foraging theory to include organisms which move collected

resources to a central location (Orians and Pearson, 1979). The ideas of optimal

foraging theory have been extended to other search domains such as finding mates.
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In the robotics community, spiral search has been used for robot search (Skubch,

2012) for single targets or uniformly distributed targets. Ho↵ et al. (2013) present

an adaptive foraging algorithm that uses a combination of random walks and a

circular sweep. Van Dartel et al. (2004) evolved neural controllers for agents searching

a simulated world with targets drawn from a uniform distribution. Swarm robot

simulations have used Lévy walks in combination with chemotaxis-inspired gradient

sensing (Nurzaman et al., 2009) and artificial potential fields (Sutantyo et al., 2010)

to search unmapped spaces e�ciently with range-limited sensors. Keeter et al. (2012)

use underactuated robots implementing Lévy walks in a 3D aquatic environment to

search for four uniformly distributed targets. They sample various values of µ in 0.5

increments in the range 1.1 < µ < 3. Keeter et al. find that in simulation there is

a monotonic improvement in search time as µ approaches their lower bound of 1.1,

and ballistic motion.

Statistical physics, ecology, and operations research have all had a significant

impact on the development of spatial search theory. Until recently the applications

of search theory to engineered systems have been limited. However, with the rise of

swarm robotics, there is an increasing need for computer scientists to take advantage

of this disparate body of work in designing spatial search algorithms. The impact

of error, target distributions other than uniform random, and swarm size may all be

relevant for swarm search strategies. We explore these questions in our work.

2.1 Deterministic Search

Deterministic search methods have been developed in the operations research com-

munity, with particular emphasis on spiral algorithms. Spiral algorithms have been
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studied analytically in two papers by Baeza-Yates. The first establishes the optimal-

ity properties of a spiral search pattern in the single searcher case (Baeza-Yates et al.,

1993). Their second paper extends the spiral search pattern to multiple searchers

but does so by having rovers move to a uniform random location before beginning

the spiral. This n-searcher algorithm is no longer deterministic (Baeza-Yates and

Schott, 1995). Burlington and Dudek (1999) extend the single searcher spiral search

pattern to a complex environment.

Isbell (1957) described a target detection search pattern for individual ships in

which it performs a continuous space-filling spiral. Ryan and Hedrick (2005) analyse

a square search pattern carried out by a single helicopter. This search pattern is

defined in Appendix H of the Coast Guard Operating Manual. (U.S. Coast Guard,

2002)

Short-lived spirals have also been observed to occur during search by ants by

Müller and Wehner (1994) and by Elizabeth Esterly in our lab (private correspond-

ence). These spirals apparently exist on very short time scales and are very noisy.

2.2 Stochastic Search

By the central limit theory almost all random search strategies become equivalent to

a simple random walk (Brownian motion) (Aleksandr and Khinchin, 1949). This is

because, asymptotically, all search patterns with finite moments converge on a Gaus-

sian distribution of displacements. Lévy and Borel (1954) (cited in Viswanathan

et al. (2011)) formulated the generalised central limit theory, which showed some

distributions do not converge to a Gaussian distribution. Exceptions are ballistic

motion, where the searcher always moves in a straight line and the Lévy ↵-stable
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distributions of displacements. Méndez et al. (2013) provides a survey of the theory

of such distributions as they relate to random search. Viswanathan et al. (1999)

argues that since Lévy search patterns allow regions to be revisited while having a

greater asymptotic mean squared displacement (MSD) than all other random search

strategies, they are an optimal search strategy. In particular, Viswanathan showed

that Lévy flights with a power law exponent of 2 maximise the searcher-target en-

counter rate for a single searcher in an infinite plane, with uniformly distributed

targets that are replaced after detection. Zhao et al. (2015) and Levin (2016) find

that in finite systems ballistic motion can be an optimal strategy.

Theoretically, systematic search outperforms random search (Stephens and Krebs,

1986), when searchers can localise themselves accurately (Bénichou et al., 2011;

Keeter et al., 2012).

2.3 Lévy Search

Lévy walks consist of step lengths that fit a power law distribution, where step length

is defined to be the displacement (shortest distance) between consecutive positions.

Most step lengths are small, but with a heavy-tail, that is, a decreasing probability of

larger steps and a non-zero probability of steps of any length. The infinite variance

of this distribution prevents convergence to a Gaussian distribution of displacements

and Brownian motion. Lévy walks assume that the direction of search at each step

is drawn from a uniform distribution and is independent of previous steps (i.e. is

isotropic and Markovian)(Mandelbrot, 1983; Viswanathan et al., 1996). Lévy search

patterns are stochastic fractals. The probability density function (PDF) that governs

the distribution of step lengths used to generate a particular Lévy pattern is a power
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law:

L(x) / x�µ, (2.1)

where L(x) is the probability of a searcher moving in a straight line for distance

x. The exponent µ that determines the shape of the PDF is known as the Lévy

exponent. When search consists of a sequence of disconnected points, the motion is

called a Lévy flight (the searcher is flying or jumping from point to point). Since

we consider space between points to be part of the area searched, and therefore the

intervening space is traversed with some finite velocity, we are working with a Lévy

walk (Shlesinger and Klafter, 1986).

Lévy walks, as models of search, were first developed to explain the disparity

between observed super-di↵usive animal motion and simple random walk models.

Animals searching for food tend to maintain relatively straight trajectories for longer

distances than would be produced by a simple random walk. The Lévy walk for-

aging hypothesis is an explanation for this observation proposed by physicists and

ecologists. Lévy walks have been used to explain the search patterns of numerous

species including reindeer (Mårell et al., 2002), albatross (Viswanathan et al., 1996),

and human foragers (Raichlen et al., 2014). James et al. (2011) provide a more

comprehensive list along with criticism of Lévy walk analysis. Whether these search

patterns are truly power law distributed is a matter of ongoing debate (Plank and

James, 2008; Humphries et al., 2012). The issue is clouded, in part, because a true

power law distribution of step lengths is impossible in a finite space. The question

then is whether animals or cells use a truncated power law distribution of step lengths

constrained by the environment in which they are searching.
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The PDF governing Lévy flights as formulated in Eq. (2.2) not only describes

the probability, L(x), of observing a step length of less than x, but also relates the

resulting stochastic fractal to the Hausdor↵ fractal dimension (H):

L(x) =
�

x
min

✓
x

x
min

◆�1��

(2.2)

where, x is the step length, x
min

is the least possible step length, and � determines

the rate at which the probability of a particular step length occurring decays. The

coe�cient normalises the area under the curve to one and so enforces that the equa-

tion is a PDF. The fractal dimension of a Lévy flight is µ � 1 in Eq. (2.1) on the

previous page (Mandelbrot, 1983; Hughes, 1996).

Raposo et al. (2011) model the relationship between heterogeneity of searcher

target distance and optimal µ values. Using a 1-dimensional analysis, they predict

that decreasing µ will increase the success of target encounters in heterogeneous

landscapes. They suggest that this theoretical result generalises to the 2-dimensional

case.

2.4 Hausdor↵ Fractal Dimension

The Hausdor↵ fractal dimension is a compact measure of the trade-o↵ between intens-

ity and extent. Increasing extent, by decreasing H, results in increased displacement

of searchers from their start positions as a function of time, independent of searcher

velocity. The fractal dimension of a search pattern is the asymptotic fraction of loca-

tions visited in a search space. For example, Brownian motion has fractal dimension

H= 2 (Taylor, 1953), meaning that, asymptotically, a Brownian search pattern visits
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all positions in a 2-dimensional space. As far as we are aware the fractal dimension

of Lévy walks, in which the searcher visits the intervening space between movement

endpoints, has not been formalised. Therefore we calculate H for Lévy flights. Since

Lévy flights visit only endpoints of steps, H is the dimension of the visited point-

set (Seshadri and West, 1982; Mandelbrot, 1983). H for Lévy walks will be strictly

greater than that for Lévy flights.

Substituting the H of Brownian search for � results in a µ of 3. The resulting

walk is maximally intense when embedded in a 2-dimensional space.

2.5 Mean Squared Displacement

The mean squared displacement, a measure of search extent, of a population of

searchers is characterised by a power law:

MSD =
⌦
(~r(t+�t)� ~r(t))2

↵ / t↵ (2.3)

where ~r(t) is the position vector of a searcher at time t and ~r(t+�t) is the location

of the searcher after some time increment, �t. Angle brackets indicate the ensemble

average over the population of searchers. The MSD exponent describes the rate of

displacement over time and is related to the search extent. As ↵ increases search

extent increases. MSD is related to H by 2/H (Zanette, 1999).
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Figure 2.1: Stochastic fractal search patterns. A sample of 10,000 steps with uniform
turning angles and a power law distribution of step lengths. The power law distri-
butions of step lengths A) with exponent µ = 3 (H= 2) resulting in B) a Brownian
pattern of search. C) A power law distribution of step lengths (µ = 1.5, H = 0.5),
and D) the resulting pattern of search with lower dimensionality, and therefore lower
intensity but greater extent. Reprinted from Fricke et al. (2016b).

2.6 Brownian Motion

The most common formalism used to generate random search is Brownian motion.

This approach is so common, in fact, that the terms are often used interchangeably.

The essential feature of Brownian motion is that the direction of movement at each

time step is uncorrelated with the previous time step. The time between reorienta-

tions in direction is assumed to be small. In continuous time systems, this is taken

to be the limit as time approaches zero. In discrete-time systems, the smallest time

step is used between directional reorientations. In systems with continuous time and
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space and finite velocities, as the time between steps goes to zero so does the distance

covered between reorientations. In systems with continuous time but discrete space,

the minimum distance covered between reorientations will have a discrete lower limit.

This is also the case for discrete time and space systems. A simplifying assumption

we make is that discrete time and space systems with su�ciently fine granulation

are representative of a continuous system.

The displacement of a searcher from time t to t+1 is the sum of the magnitudes,

M , of the movement vectors between time t and t+1. Given that the distribution of

M has finite variance and is unbiased, the sum of M will be a Gaussian distribution

by the central limit theorem.

Brownian motion has H = 2 which can result in significant oversampling of

the search space when performing a central place foraging task. When Brownian

searchers start searching from the same location, the high fractal dimension of their

movement results in locations being revisited by other robots in the swarm. For n

searchers, the number of unique locations visited is proportional to t ln n
ln t

. Only after

t exceeds en, do searchers employing a simple random walk avoid search redundancy

(Larralde et al., 1992).
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Analysis of T cell Search in Lymph
Nodes

With four parameters I can fit an elephant, and with five I can make

him wiggle his trunk.

— Jon von Neumann quoted in Dyson, F. (2004). A meeting with Enrico

Fermi. Nature, 427(6972):297
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3.3 Author Summary

The immune system is responsible for clearing disease-causing infections, and T cells

are an important immune cell type that helps eliminate viruses and bacteria. To be-

come activated, T cells must encounter another type of immune cell called dendritic

cells in the lymph node. T cell search for dendritic cells is similar to animal search

for food. Here we precisely analyze how T cells move using search patterns originally

developed to describe animals. We find that T cell motion is a complex combination

of multiple strategies including moving in a persistent direction and using di↵er-

ent step sizes. This allows T cells to balance the need to search both extensively

throughout the lymph node and also to search some regions thoroughly for possible

infection. Furthermore, we use a computer model to demonstrate that T cells are

more likely to be found in specific locations in lymph nodes. We call these locations

“hotspots”. We find that T cells in hotspots move di↵erently, apparently searching

more thoroughly, suggesting that T cells can adapt to their environment, similar to
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animals foraging for food. These results show that T cells share fundamental search

strategies with foraging animals, exhibiting both persistence and adaptation.

3.4 Abstract

E↵ective search strategies have evolved in many biological systems, including the

immune system. T cells are key e↵ectors of the immune response, required for clear-

ance of pathogenic infection. T cell activation requires that T cells encounter antigen-

bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph

nodes may be a crucial determinant of how quickly a T cell immune response can

be initiated. Previous work suggests that T cell motion in the lymph node is similar

to a Brownian random walk, however, no detailed analysis has definitively shown

whether T cell movement is consistent with Brownian motion. Here, we provide a

precise description of T cell motility in lymph nodes and a computational model

that demonstrates how motility impacts T cell search e�ciency. We find that both

Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead,

T cell movement is better described as a correlated random walk with a heavy-tailed

distribution of step lengths. Using computer simulations, we identify three distinct

factors that contribute to increasing T cell search e�ciency: 1) a lognormal dis-

tribution of step lengths, 2) motion that is directionally persistent over short time

scales, and 3) heterogeneity in movement patterns. Furthermore, we show that T

cells move di↵erently in specific frequently visited locations that we call “hotspots”

within lymph nodes, suggesting that T cells change their movement in response to

the lymph node environment. Our results show that like foraging animals, T cells
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adapt to environmental cues, suggesting that adaption is a fundamental feature of

biological search.

3.5 Introduction

Search has been extensively studied in biology, particularly in ecology, to understand

how animals search for food, mates and prey. The pattern of movement by search-

ing agents a↵ects search e�ciency in a variety of biological contexts (Bartumeus

et al., 2005; Viswanathan et al., 2002; Méndez et al., 2013). Optimal foraging theory

suggests that animals, including social animals such as ants and bees, have evolved

strategies to individually or collectively maximize food intake in minimal time (Pyke,

1984).

Similar to foraging animals, T cells of the immune system search for targets to

mount an immune response. T cells are a critical immune e↵ector, required to clear

viral infections and to help B cells produce antibody. In order to initiate an e↵ective

immune response, näıve T cells must encounter and sample dendritic cells (DCs)

bearing cognate antigen in lymph nodes (LNs). In the absence of infection, T cells

continuously enter and exit LNs interacting with DCs. Upon infection, DCs present

cognate antigen and provide stimulatory signals leading to T cell activation. T cell-

DC interactions are required for näıve T cells to survive, activate and eventually

clear infection as well as maintain immune memory (Munoz et al., 2014b; Mackay

et al., 2000; Germain et al., 2012).

T cell activation is promoted by repeated sampling of nearby DCs (Textor et al.,

2014), while at the same time T cells explore the entire population of DCs for rare

antigen indicative of infection. This presents T cells with an optimization problem
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in which T cells must balance thoroughness and extent of search. This requires that

many T cells search across a broad extent, contacting many DCs quickly, a process

similar to optimal foraging in animals. Simultaneously, T cell search is sometimes

thorough, repeatedly sampling in a small area (Textor et al., 2014). Both of these

factors contribute to the overall rate at which T cells encounter DCs within LNs,

which is a critical component of organismal fitness impacting the overall timing of

the immune response.

Relatively little quantitative analysis has been done to describe how T cells move

in LNs or how that movement a↵ects the rate at which T cells encounter DCs.

Initial studies to understand the type of T cell motion in LNs from pioneering two-

photon imaging of näıve T cells suggested that T cells move using a simple di↵usive

random walk, analogous to Brownian motion of molecules (Miller et al., 2004, 2003).

Following these studies, computational modeling of T-DC interactions have often

used simple di↵usive random walks to represent T cell behavior (Donovan and Lythe,

2012; Preston et al., 2006). However, subsequent studies have not precisely described

T cell motion in LNs, so it is unclear whether di↵usive random walks are appropriate

models for T cell movement.

Optimal random search strategies have been extensively studied in ecology, and

ecological models of movement may be useful for characterizing T cell motility

and search e�ciency. Brownian motion, Lévy walks, and correlated random walks

(CRWs, also called persistent random walks), have been proposed as idealized biolog-

ical search models (Codling et al., 2008), but careful quantitative analysis is required

to understand how well search models characterize T cell motility and search e�-

ciency (Krummel et al., 2014). Brownian motion is often referred to as a simple

random walk and is characterized by movement with uniformly distributed turning
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angles and small fixed step sizes relative to the time resolution of observation (Miller

et al., 2002, 2003; Mempel et al., 2004; Bousso and Robey, 2003; Celli et al., 2012).

Qualitative similarities between Brownian motion and the movement of microorgan-

isms resulted in simple random motion being used as a dominant model of cell motion

(Przibram, 1913). Brownian motion results in di↵usive movement in which distance

travelled is proportional to the square root of time. In two dimensions this results

in a normal distribution of speeds, and in three dimensions it results in a Maxwell

distribution of speeds (Maxwell, 1860).

Lévy walks exist between ballistic (or straight directional) motion at one extreme

and Brownian motion at the other. In contrast to Brownian motion, the step lengths

of Lévy searchers fit a power law distribution with most step lengths being small,

but with a heavy-tail, that is, a decreasing probability of larger steps and a non-zero

probability of steps of any length (Viswanathan et al., 2002; Codling et al., 2008).

Lévy walks have been used to model animal movement, for example, in albatross,

ant, aphid and human foraging, and more recently, T cells in the brain (Viswanathan

et al., 1996, 2002; Petrovskii et al., 2011; Raichlen et al., 2014; Harris et al., 2012).

Both Brownian and Lévy walks assume that the direction of search at each step

is drawn from a uniform distribution and is independent of previous steps (i.e. is

isotropic and Markovian). CRWs on the other hand use fundamentally di↵erent

mechanisms to model similar patterns of motion that tend to persist in direction over

time. CRWs depend on the distribution of turning angles between successive steps

leading to directional persistence. In search modelled by CRWs, the current direction

of motion probabilistically influences future step directions (Codling et al., 2008).

On relatively short time scales, Lévy walks and CRW may be di�cult to distinguish

since they both produce superdi↵usive motion (Reynolds, 2010), that is, displacement
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that increases faster than the square root of time. Compared to di↵usive movement,

superdi↵usion increases search extent and decreases search thoroughness.

Despite the fact that many search strategies are well-characterized, there has

been no systematic analysis of T cell motion in LNs. The lack of clarity in empirical

studies has led to T cell motility being modelled using Brownian motion (Celli et al.,

2012), Lévy walks (Harris et al., 2012), and correlated random walks (CRW) (Textor

et al., 2014), or a combination of movement patterns (Banigan et al., 2015). Recently,

Harris et al. showed that the movement of T cells in Toxoplasma gondii infected brain

tissue fits a Lévy walk resulting in superdi↵usion and e�cient detection of protozoan

targets (Harris et al., 2012). It is not clear if Lévy movement has not previously

been found in LN because such movement does not occur there, or simply because

it had not been looked for. The lack of precise quantitative understanding of T cell

motion in LNs leads to inconsistent models and limits our ability to determine how

T cell motility a↵ects the e�ciency with which T cells encounter DCs.

In this study, we analyze T cell search behavior in LNs using two-photon mi-

croscopy. We begin our analysis with traditional statistical methods that describe

the velocities, step lengths, displacement, and turning angles taken by näıve T cells

searching for DCs. We then extend these analyses to more accurately and com-

prehensively describe motility patterns, including using maximum likelihood esti-

mates (MLE) to fit experimental data. Our study statistically analyzes T cell search

strategies in LNs, and uses multiple e�ciency metrics that measure the spatial thor-

oughness and extent of T cell search. We then directly quantify the contribution of

di↵erent types of motion to the e�ciency of T cell search. Additionally, by compar-

ing T cell movement to the patterns generated by null models of random motion,

interesting non-random interactions between T cells and their environment become
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apparent, suggesting that T cells adapt movement in response to environmental cues.

Our null models reveal hot spots that are visited more frequently than can be ex-

plained by chance. Our results suggest that even a precise characterization of T cell

movement based on the assumption of random movement does not fully capture the

complexity of T cell movement in the LN environment.

3.6 Results

3.6.1 Movement of näıve T cells in lymph nodes is
superdi↵usive, not Brownian

Two photon microscopy (2PM) has been used extensively to study the movement of

T cells in intact lymph nodes (Stoll et al., 2002; Miller et al., 2002; Mempel et al.,

2004; Celli et al., 2012; Cannon et al., 2013). We isolate bulk primary T cells from

LNs of näıve C57Bl/6 animals, fluorescently label T cells with dyes, reintroduce

labeled T cells into recipient mice, and then use 2PM to image labeled T cells in

intact explanted LNs of recipients (see Materials and Methods for further details).

We track cells for up to 10 minutes and include all motile cells in observation win-

dows. We eliminate tracks with total track length shorter than 17µm or that show

squared displacement less than 300µm2 (= 17 µm ⇥ 17 µm) as described previously

by Letendre et al. (Letendre et al., 2015). The data analyzed here are from 5,891

individual T cell tracks from 41 fields from 12 experiments. We group those 41 fields

into 7 datasets, each dataset containing fields imaged using frame rates within one

second of each other. This allows us to combine data across fields when performing

analyses, such as velocity autocorrelation, that depend on the frame rate.
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Figure 3.1: T cells move in lymph nodes with some features of a Lévy walk. Lévy
walks are characterized by particular power law exponents of mean squared displace-
ment (MSD) and step length distribution. (A, bottom) Observed T cell MSD vs.
time. The dashed line is the linear regression with slope ↵ = 1.41 indicating superdif-
fusion. (A, top) The number of data points in the MSD calculation. (B) Example
displacements for a single T cell track with r2 = 0.52, and (C) with r2 = 0.93. (D)
Histogram of for individual tracks with r2 > 0.8 (see Fig. S2 for other r2 thresh-
olds) with labels indicating the range of values of ↵ consistent with Brownian, Lévy
and ballistic motion. (E) Empirical complementary cumulative distribution function
(CCDF) of all 145,731 step lengths for all 5,077 cells. The x-axis is all possible
distances less than the maximum observed, the y-axis is the probability that an ob-
served step length exceeds a particular value of x. The dashed line (o↵set for clarity)
with slope 4.05 is the best fit to the power law tail of the CCDF which includes only
6.15% of the steps (Clauset et al., 2009). The line with slope 1.19 is the best fit to
all data. (F,G) Examples of step length distributions and MLE fits for tracks with
49% and 93% of the track in the tail. (H) Percentage of tracks in the Lévy region
for µ and power law exponents and their intersection. Data are included when the
r2 > 0.5 for and at least 50% (left histogram) or 70% (right histogram) of the track
steps are retained in fitting the power law tail.

We observe T cell velocities and motility coe�cients largely in agreement with

those previously published (Miller et al., 2004; Mempel et al., 2004; Viswanathan

et al., 2008; Letendre et al., 2015). [sic: (Miller et al., 2004; Mempel et al., 2004;

Letendre et al., 2015)] We calculate the di↵usion coe�cient using the unweighted
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Figure 3.2: Distributions of T cell speed and step lengths with MLE fits. For (A)
speed and (C) step length the lognormal function is the best fit (see Tables 3.1 on
page 37 and 3.2 on page 38 for likelihood values and model parameters). Fits for
normalized speed (B) and normalized step lengths (D) are divided by the mean speed
or step length of the track from which they are drawn. (E) Histogram of all 149,592
observed turning angles. The green line is the maximum likelihood estimation of the
gamma distribution used to model turning angles in the e�ciency simulation. (F)
Turning angle autocorrelation for 23,169 vectors from the 537 T cell tracks observed
in one dataset. The correlation in movement direction decays until reaching zero at
approximately 240 s.

average method (Michalet, 2010, 2011). T cells move with a mean speed with 95%

confidence interval = 5.81 ± 0.024 µm/min, median speed = 4.22 µm/min, motility

coe�cient, D = 19.2±0.534µm3/min [sic: µm2/min], calculated from a linear fit MSD

of 5,185 tracks (out of 5,891 tracks filtered for r2 > 0.8). The motility coe�cient is

calculated using a linear model fit to the first 25% of each displacement curve and

for positions not exceeding the 10min track time.
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Figure 3.3: T cell search balances unique and total contacts with targets. Interquar-
tile boxplots show search e�ciency for DCs in 10 µm radius clusters. Panels (A) and
(B) show unique contact e�ciency; (C) and (D) show total contact e�ciency. (A)
and (C) show 1000 e�ciency samples for each of the 41 fields. (B) and (D) compare
the percent change in median search e�ciency for each candidate search model rela-
tive to observed T cell search (indicated by the line at 0). See Tables 3.3 on page 39
and 3.4 on page 39 for other target distributions and significance values. Outliers
are not shown for clarity.
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were selected to illustrate di↵erent MLE model fits for fast and slow tracks (for fits
see Table 3.5 on page 40).

Displacement is commonly used as a first step to assess whether movement is

consistent with a Lévy walk or Brownian motion (sample tracks in Fig. A.1 on

page 178)(Viswanathan et al., 2008; Reynolds, 2010). We determine the displace-

ment of individual T cells over time. Fig. 3.1A shows the mean squared displacement

(MSD) of one of the 7 datasets, as well example tracks with lower (Fig. 3.1B) and

higher (Fig. 3.1C) r2 values. We then calculate the linear fit to the log-log-trans-

formed data. Logarithmically transforming data before applying a linear regression is

a common way to measure the exponent of a power-law relationship between depen-
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Figure 3.5: T cells visiting hotspots show a di↵erent distribution of speeds than T
cells that do not visit hot spots. Cold tracks (A) have a speed distribution that is
more peaked at low speeds with a more skewed, heavy-tailed distribution compared
to hot tracks (B). For fits, see Table 3.6 on page 40. (C) Visit frequency, or number
of observations of hot tracks in hot vs. cold spots. Hot tracks were observed to visit
hotspots more than cold spots. The graph shows the distribution of average number
of visits by hot tracks to hotspots versus cold spots. Interquartile box plot of the
distribution with the red line indicating the median number of visits. Outliers are
not shown. **** indicates p << 10�3 using Mann-Whitney U test.

dent and independent variables (Michalski et al., 1986). Log-log-transformed Lévy

walks produce displacement exponents, ↵, between 1 and 2 (Viswanathan et al.,

2005). We calculate the distribution of ↵ for all T cell tracks and find that 56% of

T cells have a displacement exponent ↵ falling in the expected window for a Lévy

walk (Fig. 3.1D). Only 28.3% of cell tracks are subdi↵usive (↵ < 1), and the remain-

ing tracks (15.6%) have a best-fit displacement exponent indicative of accelerating

motion (↵ > 2). Because low r2 values of linear fits to log-log-transformed data

may indicate that the data are not well-described by any displacement exponent, we
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Step lengths
Distribution -log Likelihood ⇥105 AICc⇥105 MLE Parameters
Lognormal 2.65 5.29 µ = 0.4818 � = 0.9192
Gaussian 3.36 6.72 µ = 2.3895 � = 2.4229
Maxwell 4.02 8.04 a = 3.8497
Power Law (Lévy) 4.58 9.16 ↵ = 1.1921

Normalized Step lengths (step length/track mean step length)
Lognormal 1.20 2.40 µ = �0.2217 � = 0.6896
Gaussian 1.61 3.23 µ = 1 � = 0.7324
Maxwell 1.69 3.37 a = 0.5117
Power Law (Lévy) 3.32 6.63 ↵ = 1.2245

Table 3.1: MLE fits to step lengths and normalized step lengths (N =
145,731 steps). Negative log-likelihood measures the relative ability of candi-
date models to explain the observed data (For additional fits tested, see Tables A.1
on page 190 and A.2 on page 191). The corrected Akaike information criterion
(AICc) and Bayesian information criterion (BIC) (Table A.2 on page 191) con-
firm that order of fit quality is not due to the number of model parameters. The
most negative -log likelihood and AICc scores are the best fits; in this case that
is the smallest positive score for the lognormal distribution. The last columns
lists the distribution parameters that were selected by MLE. See Tables A.1 on
page 190 and A.2 on page 191 for other distribution fits and goodness of fit statis-
tics. doi:10.1371/journal.pcbi.1004818.t001

repeat the analysis on data sets restricted to r2 values > 0.5, which discards 33%

of all tracks, and r2 > 0.75, discarding 50% of all tracks (see Fig A.2 on page 179

for figures with di↵erent r2 filters). Increasing r2filtering decreases the fraction of

cells in the subdi↵usive window, but the qualitative message remains the same: T

cells demonstrate heterogeneous behavior, with some displacements consistent with

subdi↵usive, Brownian, ballistic and even accelerating motion, but the majority of T

cells are superdi↵usive but sub-ballistic. Fig 3.1D shows the histogram of ↵ for tracks

with an r2 > 0.8, other r2 thresholds are shown in Fig A.2 on page 179, including

all tracks with no filtering in S2A Fig.
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Speeds
Distribution -log Likelihood ⇥105 AICc⇥105 MLE Parameters
Lognormal -1.84 -3.68 µ = �2.5027 � = 0.9329
Gaussian -1.61 -3.23 µ = 0.1161 � = 0.0881
Maxwell -1.12 -2.24 a = 0.0071
Power Law (Lévy) 0.122 0.245 µ = 1.2069

Normalized Speeds (speed/track mean speed)
Lognormal 1.22 2.45 µ = �0.1669 � = 0.5706
Gaussian 1.37 2.74 µ = 1 � = 0.7324
Maxwell 1.32 2.65 a = 0.4414
Power Law (Lévy) 3.58 7.16 µ = 1.2446

Table 3.2: MLE fits to speeds and normalized speeds (N = 159,746). The
Lognormal distribution has the most -log-likelihoods and AICc score and therefore
is the best fit. The parameters selected by MLE are shown for each distribution. See
Tables A.1 on page 190 and A.2 on page 191 for other distribution fits and goodness
of fit statistics. doi:10.1371/journal.pcbi.1004818.t002

3.6.2 Näıve T cell movement in LNs is not consistent with
a Lévy walk

While displacement analysis suggests most T cells are consistent with a Lévy walk,

another defining feature of Lévy walks is that the inverse power law complemen-

tary cumulative distribution function (CCDF) for step lengths has an exponent, µ,

between 1 and 3. Therefore, we analyzed T cell step lengths for the µ exponent.

We define a step to be the resultant of a velocity subsequence in which each T cell

velocity vector deviates by no more than 15 from the previous vector and a step

length is the distance covered by a step. Fig 3.1E shows that a power law fit to the

population of T cell step lengths is only valid if almost 94% of the data are excluded

from the analysis (see Materials and Methods: Distribution fitting). The resulting

best-fit µ exponent for the remaining 6% of the power law tail is 4.05 (Fig 3.1E).

The curvilinearity, the poor fit, as well as the µ value all indicate that a Lévy walk is

not a good description of T cell motility. On average 51% of data must be excluded

38



www.manaraa.com

Chapter 3. Analysis of T cell Search in Lymph Nodes

Search Strategy
Target

Distribution
Brownian CRW Lognormal Bootstrap LogMCRW Power Law

10 µm (0.2) �41.88± 0.82 �28.11± 1.09 �15.91± 1.69 �12.98± 0.99 �7.35± 1.92 27.63± 5.44
p < 10�4, 10�4 p < 10�4, 10�4 p < 10�4, 10�4 p < 10�4, 10�4 p < 10�4, 10�4 p < 10�4, 10�4

20 µm (0.32) �39.828± 0.64 �25.87± 0.70 �13.39± 1.62 �9.926± 1.37 �3.98± 1.94 34.17± 8.49
p < 10�4, 10�4 p < 10�4, 10�4 p < 10�4, 10�4 p < 10�3, 10�4 p < 10�4, 10�4 p < 10�4, 10�4

40 µm (0.44) �41.88± 0.81 �22.75± 0.55 �9.621± 1.97 �4.798± 1.37 �0.218± 2.17 36.02± 6.41
p < 10�4, 10�4 p < 10�4, 10�4 p < 10�4, 10�4 p < 0.85, 10�4 p < 10�4, 10�4 p < 10�4, 10�4

Table 3.3: Percent change of each idealized search strategy for unique con-
tacts compared to the empirical search strategy across 3 di↵erent target
distributions. Table entries are percent change in median search e�ciency from
observed ± 95% confidence interval. Two p-values are shown: the first indicates
the significance of the change in median e�ciency between the observed and ideal-
ized runs (N=10 runs, each run consists of 4,100 samples, Fig. 3.3B). The second
p-value tests whether all raw e�ciency values di↵er between observed and idealized
runs (N=41,000, Fig. 3.3A). All p-values are calculated using the Mann-Whitney
U test. The values in parentheses are the Hopkins aggregation statistic. All search
strategies are statistically di↵erent from observations except LogMCRW in the most
di↵use 40 µm DC clusters (in bold).doi:10.1371/journal.pcbi.1004818.t003

Search Strategy
Target

Distribution
Brownian CRW Lognormal Bootstrap LogMCRW Power Law

10 µm (0.2) 8.7± 1.16 12.94± 1.34 7.24± 3.25 7.24± 3.25 8.4± 3.66 �28.66± 2.43
p < 10�4,0.29 p < 10�4, 10�3 p < 0.01, 0.05 p = 0.63, 10�4 p < 10�3,0.73 p < 10�4, 10�4

20 µm (0.32) 12.71± 1.52 15.67± 1.54 9.22± 2.72 2.29± 2.72 12.18± 2.64 �26.27± 4.14
p < 10�4,0.87 p < 10�4, 10�4 p < 0.05, 0.05 p = 0.19, 10�4 p < 10�4,0.8 p < 10�4, 10�4

40 µm (0.44) 17.71± 1.86 20.89± 1.58 13.07± 3.24 4.52± 2.51 16.31± 2.69 �24.08± 4.4
p < 10�4, 10�4 p < 10�4, 10�4 p < 10�4, 10�4 p < 0.05, 10�4 p < 10�4, 10�4 p < 10�4, 10�4

Table 3.4: Percent change of each simulated search strategy for total con-
tacts compared to the empirical search strategy across 3 di↵erent target
distributions. Table entry format is identical to Table 3.3. These values correspond
to Fig 3.3C and 3.3D. Brownian motion, bootstrap and LogMCRW are not signifi-
cantly di↵erent from the observed distribution of e�ciencies when targets are more
clustered (in bold), but power law search underestimates the e�ciency of search for
total contacts. doi:10.1371/journal.pcbi.1004818.t004

in order to obtain a maximum likelihood estimated (MLE) power law fit (see Fig 3.1

on page 32F and G for example tracks with low and high percentage of steps in the

power law tail; see Fig A.3A and D for histograms of µ using other GoF threshold

values; and see Figs A.2 on page 179 and A.3 on page 180 for additional analysis.)
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Mean Speed < 5 µm/min Mean Speed > 15 µm/min
Distribution -log Likelihood (⇥105) MLE Parameters -log Likelihood (⇥103) MLE Parameters
Lognormal -1.09 -3.35, 0.826 -2.60 -1.35, 0.387
Gaussian -0.918 0.0482, 0.0407 -2.73 0.277, 0.0958
Maxwell -0.789 0.0013 -2.66 0.0286
Power Law -0.492 1.25 2.018 1.35
Skew 2.37 0.52
Kurtosis 13.3 3.98

Table 3.5: Best fit likelihood and MLE estimated parameters for the fastest
and slowest cells. The Gaussian distribution better fits tracks with mean speed
> 15 µm/min while lognormal better fits tracks with mean speed ¡ 5 µm/min. The
step speed distribution for fast tracks has a shorter and lighter tail than the sample
of tracks with slower mean speeds. Best negative loglikelihood scores are in bold.
doi:10.1371/journal.pcbi.1004818.t005

Hot Tracks Cold Tracks
Distribution -log Likelihood (⇥105) MLE Parameters -log Likelihood (⇥105) MLE Parameters
Lognormal 1.29 0.671, 0.752 1.85 0.819, 0.583
Gaussian 1.405 2.504, 1.72 4.22 4.53, 22.3
Maxwell 1.48 3.077 8.24 171
Power Law 2.96 2.65 1.21
Skew 1.45 11.12
Kurtosis 6.74 136

Table 3.6: Hot and cold track step lengths show di↵erent MLE distri-
bution fits. Hot tracks tend to be faster than cold tracks and more Brownian
in their movement pattern. The high kurtosis and skew is due to a long tail
in the distribution of step lengths belonging to tracks that do not visit hotspots.
doi:10.1371/journal.pcbi.1004818.t006

We determined the number of tracks that fit both 1 < µ < 3 and 1 < ↵ < 2

parameters. Setting our goodness of fit (GoF) filtering criteria to require that at

least 70% of the data per track is retained in calculating the exponent µ (Fig 3.1F),

and the r2 statistic for the power law exponent ↵ is at least 0.7, we find that only

5.5% of all T cell tracks fit both criteria for Lévy walk (Fig 3.1 on page 32H). We

note that the tracks excluded when filtering by r2 and those filtered by the percent

of track in the power law tail both tend to be subdi↵usive. For any filtering criteria

the vast majority of T cell tracks are not Lévy walks (Fig A.4 on page 181).
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To further analyze T cell motion, we quantify speeds (T cell displacement between

consecutive frames multiplied by the frame rate) of all T cell tracks (Fig 3.2A and

2C) and find that in LNs T cell speeds range from 6.5 ⇥ 10�4µm/s to 0.9 µm/s

(Fig 3.2A). We fit experimentally derived speeds (Fig 3.2A) and step lengths (Fig

3.2B) to idealized probability distributions. We use parametric distributions because

they are associated with well-known generative processes; for example, the Gaussian

distribution is produced by the cumulative e↵ect of additive processes, the lognormal

distribution is often associated with multiplicative or branching processes (Gunning

and Wearing, 2013), and the Maxwell distribution is a product of Brownian motion in

three dimensions. We use likelihood measures to rank how well di↵erent distributions

explain the observed data (Tables 3.1 on page 37 and 3.2 on page 38).

The distribution of T cell step lengths and speeds are more consistent with a log-

normal distribution than with Brownian motion (defined by a Gaussian or Maxwell

distribution) or a Lévy walk (defined by a power law distribution of speeds (Shlesinger

et al., 1999) as shown by the higher values in the MLE for power law fits in Tables 3.1

on page 37 and 3.2 on page 38. The variance of observed T cell speeds and lengths

is high, and the distributions have a heavier tail (greater right skew) than both

Gaussian and Maxwell distributions. The power law probability distribution over-

represents both very small steps and very large steps compared to observed T cells.

The lognormal distribution shows the best statistical fit for both speed and step

lengths. The gamma distribution also fits the observed speeds very well (S1 and S2

Tables, Fig A.5 on page 182). However since gamma and lognormal are often used

to model the same phenomena, we present only lognormal here (Wiens, 1999).

It is possible that the right skew in the speed distribution arises from the variance

between track mean speeds rather than from speed variance within tracks (Petrovskii
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et al., 2011). To test for this possibility, we divide each speed drawn from within a cell

track by the cell mean speed (called normalized) and ask whether the distribution

becomes less heavy-tailed. We find that both normalized speed and step length

distributions are still best fit by a lognormal distribution (compare Fig 3.2A with

Fig 3.2C, 3.2B and 3.2D and the normalized vs. raw lengths and speeds in Tables 3.1

on page 37 and 3.2 on page 38), but the right skew is decreased. Our observations

indicate that the heavy-tailed lognormal distribution is not simply due to distinct

populations moving at di↵erent mean speeds, though heterogeneity in speed within

the population is a factor.

Both Brownian motion and Lévy walks assume that the angle of each turn is

drawn from a uniform random distribution. We analyze the turning angles of each T

cell at each time step and find that T cell turning angles are not uniform, and that

there is a bias toward turning angles of less than 90 (Fig 3.2E). The non-uniform

distribution of turning angles suggests that T cells may move according to a CRW.

We fit distributions to turning angles using MLE and find the gamma distribution

to be the best fit, although it cannot capture all of the variation in the bi-modal

distribution (Fig 3.2E green-dotted line). We then performed an autocorrelation

analysis of directions over time to determine whether there is a dependency between

the direction of T cells at one time step and the previous time steps (Fig 3.2F).

We find that T cells show turning angle autocorrelation consistent with a CRW

(indicated by positive values in Fig 3.2F). The correlation persists for approximately

4 minutes. Our cross-correlation analysis shows no drift in the observation fields

(Materials and Methods: Eq. (A.2) on page 195).
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3.6.3 T cells balance search for unique individual targets
and interactions with multiple targets

A key function of näıve T cell search within LNs is to find and interact with antigen

bearing DCs. To determine whether di↵erent types of search can a↵ect T cell interac-

tion with DCs, we use an agent-based model, using biologically informed parameters,

to assess the degree to which di↵erent modes of random search predict the observed

pattern of T cell search e�ciency (i.e., the number of DCs encountered per unit time).

We reproduce features of T cell movement by creating search tracks using the best

distribution fit to speeds (Table 3.1 on page 37) and turning angles, limited by the

total distance covered and time observed for empirical T cell tracks. We run simula-

tions with DC targets placed with 3 di↵erent degrees of clustering: highly clustered

(DC centers placed in 10 µm radius spheres), moderately clustered (in 20µm radius

spheres) to more evenly dispersed (in 40µm radius spheres) (Fig A.6 on page 182).

We confirm that these DC placements result in a range of clusteredness according to

the Hopkins aggregation statistic that ranges from 0.44 for dispersed clusters (close

to the 0.5 value expected for a uniform distribution) to 0.2 for compact clusters.

We confirm that Brownian motion in our simulations results in di↵usive movement

(Fig A.7 on page 183). We then compare e�ciency of modelled search with observed

T cell tracks from the experimental data across this range of DC cluster sizes.

We calculate e�ciency of T cell search in two ways. First, we determine how

many unique “DC” targets were encountered by each T cell in a specific period

of time. Previous studies suggest that näıve T cells have no a priori information

about the location of DCs in LNs (Preston et al., 2006; Donovan and Lythe, 2012).

Second, we determine how many total DC target encounters occur in the specified

time. Total contacts count repeated contact with the same DC while unique contacts
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counts only one contact per DC. Total contacts are important for T cell activation

and potentially survival while unique contacts are a measure of how long it may take

T cells to find rare DCs presenting cognate antigen. The simulation addresses two

questions: do statistical descriptions of T cell movement produce search e�ciencies

that are similar to those of observed T cells; and, how do the relative e�ciencies of

the idealized models compare to each other and experimentally observed T cells.

Not surprisingly, the e�ciency of observed T cells show a much wider range of

variability compared with idealized models (Fig 3.3A), and we find clear di↵erences

in search e�ciency between observed T cells and some idealized models. Brownian

searchers are approximately 40% less e�cient than observed T cells for unique DC

contact (Fig 3.3A and B and Table 3.3 on page 39). In contrast, the power law

(Lévy) fit was 30% more e�cient than observed T cell tracks, and as expected, more

e�cient than any other model for unique contacts with DCs. We also modelled a

correlated random walk (CRW) as well as a CRW with a lognormal distribution of

step lengths (a lognormal modulated CRW, LogMCRW). We show that the idealized

search that most closely fits the observed e�ciency of experimentally derived T cell

search in LNs is the LogMCRW (Fig 3.3B), in keeping with CCDF fits (Fig 3.2 on

page 33). E�ciency is not dependent on placement of DC targets in the model:

e�ciency measures remain similar across multiple target distributions and degrees of

clustering (Table 3.3 on page 39). Thus, LogMCRW is not only the best description

of the step length distribution, but also the best e�ciency match for unique contact

T cell search in LNs.

Our simulation of unique target search also gives a quantitative estimate of the

contribution of di↵erent types of T cell movement to search e�ciency (Table 3.3 on

page 39). Correlation in angles of T cells increases the search e�ciency by 10%
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(from -42% for Brownian without correlation to -28% for CRW; -17% for lognormal

to -7% for LogMCRW). The heavy-tailed step lengths contributed a 20% increase

in e�ciency (-42% Brownian to -17% lognormal). These results show that T cell

motion is a complex mix of multiple motility parameters that contribute to overall

T cell search e�ciency.

In addition to unique antigen search, multiple DC contacts by T cells contribute

to T cell activation and may also be required for survival (Feuillet et al., 2005;

Hochweller et al., 2010; Gérard et al., 2014). Interestingly, we find that the e�ciency

of total contacts is reversed from that seen for unique contacts (compare Fig 3.3B

and D, Table 3.4 on page 39). Brownian searchers made the greatest number of

total contacts, while power law (Lévy) searchers made the fewest total contacts

(Fig 3.3D). Brownian searchers tend to resample the same locality and are therefore

more thorough in their search at the cost of reduced search extent. In contrast,

superdi↵usive heavy-tailed searchers leave DC clusters more quickly and their total

contact rate falls, increasing extent at the cost of thoroughness. Again, LogMCRW

is closer to observed data than the other simulated patterns, and it successfully

balances total contact rate with exploration of new DC clusters (Fig 3.3D).

We also performed a statistical bootstrap analysis in which search tracks were

generated by sampling uniformly from all observed track speeds and turning angles

(Feuillet et al., 2005). While the e�ciency of total contacts for bootstrap tracks is

statistically indistinguishable from observed T cells, bootstrap tracks are 12% less

e�cient than observed cells in unique contacts (Fig 3.3B and Table 3.3 on page 39).

Thus, individual T cell tracks confer e�ciency for unique DC target search that is

lost when the steps within a track are randomized, suggesting that there is underlying

heterogeneity in T cell tracks that increases T cell search e�ciency.
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3.6.4 Näıve T cells show heterogeneity in movement
patterns

To assess potential variation in T cell motility, we analyzed di↵erences in speeds

across individual T cell tracks. We find that the distribution of speeds is highly

skewed for cells with lower mean speeds, but there is less skew for cells with high

mean speeds (Fig 3.4A). The fastest cells (mean speeds > 15 µm/min, Fig 3.4D)

produce more symmetric speed distributions as demonstrated by the low skew and

kurtosis. Also, distribution fitting of speeds shows that the speeds are now best fit

by Gaussian and Maxwell distributions (Table 3.5 on page 40). In contrast, slow cells

(mean speed < 5 µm/min, Fig 3.4C) have a heavier tailed distribution of speeds as

shown by skew and kurtosis with lognormal remaining the best fit (Table 3.5). This

is not due to the number of data points available at high speeds, as skew decreased

even at the speeds with the highest number of data points (Fig 3.4B). However, slow

and fast are not discrete populations, as a mixed Gaussian cluster analysis shows

no evidence of discrete populations defined by mean speed and variance (Fig A.8

on page 184). These results suggest that T cells exhibit a continuum of movement

patterns within LNs, leading to di↵erent types of searches: slow moving cells show

a heavy-tailed distribution while faster moving cells are more Brownian.

3.6.5 “Hotspots” in the LN environment show di↵ering
patterns of T cell motion

The variation in movement shown in Fig 3.4 on page 35 suggests that T cells may al-

ter their search pattern in response to environmental cues. Our previous work shows

that altering movement in response to environmental cues can enhance search e�-
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ciency (Letendre and Moses, 2013; Hecker and Moses, 2015). Extending our previous

work in (Fricke et al., 2015), we analyze T cells in LN to identify whether T cells

movement changes within local microenvironments of the LN. To do this, we identify

whether there are locations in the LN that are visited by T cells more frequently than

predicted by a null model. We analyzed each observation field separately; each field

was discretized into cubes of 20µm per side, which is approximately twice the diam-

eter of a näıve T cell. We used the LogMCRW simulation we described earlier as a

null model (for details of [sic: the] null model see Materials and Methods, Fig A.12

on page 188). We identified spots that were visited by T cells in the simulation null

model and then identified spots that were visited by T cells from actual experimen-

tal data. We found that experimental T cells visited certain spots at significantly

higher frequency than the null model (see Fig A.12 (Fricke et al., 2015)). Spots

that were visited at a frequency 2� higher than the null model were called hotspots

(examples shown in Fig A.13 on page 189). Hotspots were observed in 37 of the 41

observation fields. The null model results in only 2.73% of visited locations being

hotspots (as expected given that we identify hotspots as those visited 2 standard

deviations above the mean, Fig A.12); in contrast, in empirical observations, 10.51%

of locations from observed experimental data are hotspots. We also find that our

null simulation predicts 32% tracks will visit hotspots but our observed tracks show

that 51% of observed tracks visit hotspots. These data all support the hypothesis

that hotspots exist in empirical observations.

We define hot tracks to be T cell tracks that intersect with hotspots and cold

tracks to be those that do not. Hot tracks have median speeds that are significantly

higher than cold tracks with hot track speed at 7.27 µm/min and cold tracks at

4.25 µm/min (median speed is 37.4% greater for hot tracks than for cold, p-values
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<< 10�3 Mann-Whitney U test). We also find that the step length distributions

of hot tracks have a significantly lower skew and kurtosis compared to cold tracks

(Table 3.6 on page 40), indicative of more Gaussian distributions in hot tracks.

Furthermore, though the step lengths of hot tracks and cold tracks are both best fit

by lognormal PDFs, the Gaussian and Maxwell distributions are nearly as good for

hot tracks (Fig 3.5A and B and Table 3.6 on page 40). These results show that T

cells that visit hotspots exhibit di↵erent, and more Brownian movement, suggesting

that they search more thoroughly than T cells that do not visit hotspots.

The presence of hotspots suggests that a microenvironment within the LN might

modify T cell behavior. To show T cell adaptation within LNs, we ask whether hot

tracks (T cells that have visited hotspots) behave di↵erently in hotspots versus other

locations within the LN (cold spots). We find that T cells from hot tracks spend

more time in hotspots than in other locations (cold spots), with T cells spending

a median of 5.36 time steps in hotspots compared to 4.5 in cold spots (p-values

<< 10�3 Mann-Whitney U test, Fig 3.5C). T cells that visit hotspots are found in

those hotspots between 13.3% and 23.2% (95% confidence interval) more often than

they are in other LN locations, i.e. cold spots. Thus, hotspots are visited by more

T cells than can be explained by chance, the T cells that visit those hotspots move

di↵erently than those that dont, and T cells spend more time in hotspots than in

other locations; all suggesting that T cell movement changes in response to the LN

environment.

48



www.manaraa.com

Chapter 3. Analysis of T cell Search in Lymph Nodes

3.7 Discussion

T cell activation depends on interactions between T cells and antigen-bearing DCs

in secondary lymphoid organs including LNs (Miller et al., 2004; Bousso and Robey,

2003). In this study, we quantify the movement of T cells within LNs, and how e�-

ciently they encounter DC targets (in terms of both unique and total contacts). We

use quantitative analysis and computer simulations to show that a search strategy

that employs both correlations in successive turning angles and a lognormal distri-

bution of speeds is most representative of observed T cell motion, which we call a

LogMCRW. However, T cell motion does not perfectly fit any simple parametric

model, and di↵erent types of motility are observed depending on where the T cell is

and how fast the T cell moves.

Accurate characterization of T cell movement is important because motility deter-

mines the timing of other immune processes downstream of T cell activation. Several

groups have published models of how T cells interact with DCs in LNs. Mirsky at al.

(Mirsky et al., 2011a) provide a review. Recent data also suggests that motility can

a↵ect both T cell recirculation (Textor et al., 2011) and T cell dwell time leading to

activation especially when detecting rare antigen (Gérard et al., 2014; Textor et al.,

2014). Di↵erent studies employ di↵erent models of T cell motion due to the lack

of precise understanding of how T cells move. For example, some models assumed

Brownian movement while another assumed a CRW with a Gaussian distribution

of steps and speeds, and yet another uses tracks bootstrapped from empirical data

(Beltman et al., 2007; Linderman et al., 2010; Celli et al., 2012; Gérard et al., 2014).

Our results show that the LogMCRW pattern of motion not only fits the experi-
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mental data, but also most faithfully reproduces the modelled search e�ciency of

observed T cell movement.

We use an agent-based model to compare empirical T cell movement to idealized

simulations. These simulations demonstrate that simulated Lévy walks overestimate

real T cell search e�ciency (for unique DC contacts) while the Brownian walk, CRW,

and bootstrap tracks underestimate it. The reverse is true for total contacts. A

lognormal distribution of steps combined with correlation among steps (LogMCRW)

best represents empirical T cell search e�ciency for total and unique contacts.

We identify and quantify three mechanisms that increase T cell search e�ciency

for unique targets: 1) heavy-tailed step lengths (comparing lognormal versus Brow-

nian search accounts for 20%); 2) directional correlation (comparing lognormal vs.

LogMCRW accounts for 10%); and heterogeneity among T cells (comparing boot-

strap to observed accounts for 10%) (Fig 3.4 on page 35 and Table 3.3 on page 39).

Thus, computational models allow us to quantify the contribution of a variety of

factors to T cell search e�ciency.

In our study, we thoroughly analyze the motility of näıve T cells in LNs in the

absence of antigenic stimulation. Our results largely agree with a recent study by

Banigan et al. also showing persistent directional movement for 3-4 minutes by näıve

T cells (Banigan et al., 2015). T cells have previously been shown to move in streams,

which may correspond to the persistence in movement. Persistence may also reflect

cells following a path of least resistance or intrinsic regulation of cell movement, for

example, the time required to form a leading edge.

In contrast to Banigan, we find a lognormal distribution of T cell steps and show

that the heavy tailed distribution of step lengths is important for search e�ciency.

Banigan et al. also suggested that modeling T cell movement using 2 subpopulations

50



www.manaraa.com

Chapter 3. Analysis of T cell Search in Lymph Nodes

may be a more faithful reproduction of T cell movement in LN (Banigan et al., 2015).

Our data does not support the existence of 2 subpopulations of T cells. Rather, we

find that there may be subregions (hotspots) within the LN that leads to di↵erences

in T cell search behavior. T cell motion near hotspots is less directionally persistent

and more Brownian (Fig 3.5 on page 36). These results demonstrate that T cells

react to their environment, and more specifically, they suggest that T cells that visit

hotspots stay longer and thus search more thoroughly at those hotspots.

The identity of hotspots remains to be determined. It is possible that hotspots

are locations of DCs or high endothelial venules from which T cells enter the LN. T

cells that search areas with DCs more thoroughly may have more repeated contacts

with the same DC as well as contacts with more DCs within the same area, enhancing

the potential for productive T cell interaction with DCs presenting cognate antigen.

One potential mechanism for hotspots is chemokine production by DCs, although

there is no direct experimental evidence for this. Another possibility is that hotspots

may reflect an underlying structure such as the fibroblastic reticular cells that may

form a network that guides T cell movement (Bajéno↵ et al., 2006). However, the

distribution of our hotspots does not obviously reflect any network structure. Others

have tested the potential role of a network on T cell search e�ciency (Donovan and

Lythe, 2012; Graw and Regoes, 2012) and found that the presence of a network has

little impact on T cell search e�ciency.

Upon activation by cognate antigen, T cell motility within the LN changes, T cells

slow down over a period of several hours and begin to form long lived interactions with

DCs, essentially ending the search phase (Bousso and Robey, 2003; Mempel et al.,

2004). E↵ector T cells then exit the LN and enter peripheral sites of inflammation.

E↵ector T cell motion in the brains of Toxoplasma gondii infected animals was shown
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to be a generalized Lévy walk based on displacement analysis (Harris et al., 2012).

This di↵ers from our findings that T cells in LNs do not fit a Lévy walk. The

di↵erence between our findings and those of Harris et al. may result from intrinsic

di↵erences between näıve and e↵ector states. Another possibility is that di↵erences

between the tissues that the T cell resides in, for example, the LN for näıve T cells

or the brain for e↵ector T cells, contain structural and chemical variability leading

to di↵erent motility.

As expected, our simulation shows that Lévy searchers are e�cient at finding rare

targets, but Brownian motion is more e�cient when measuring total contacts. These

results show that biological context may be important for T cell search e�ciency:

in the search for rare and unique antigens, the heavy-tailed search is more e�cient.

However, in situations where high numbers of DC contacts may be important for

T cell activation and potentially survival, Brownian motion has an advantage. The

observed T cell motion appears to combine the best properties of each, utilizing

multiple modes of motility to achieve e�ciency in di↵erent contexts.

Previous studies have used modeling to reproduce experimental results, and we

use this approach to show that the LogMCRW statistical model captures immuno-

logically important properties of T cell search. Similar to empirically observed T cell

movement, combining multiple features of random search in the LogMCRW balances

search over a wide spatial extent to find unique targets, with thorough search that

allows repeated contacts within a cluster. In addition, we extend our use of mod-

eling to identify novel features of the biology underlying T cell movement in LNs.

Because the LogMCRW is a good estimate of search e�ciency, it also provides a use-

ful null model with which observed T cell motion can be compared, revealing that

T cells move di↵erently in di↵erent locations in the LN. Thus the statistical model
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and search e�ciency simulations not only characterize cell movement and provide

estimates of search e�ciency, they can also be used to reveal the complexity of T

cell motility.

Indeed, comparison to our null model reveals non-random T cell movement which

may indicate change in response to some feature of the LN. We find that T cells

respond di↵erently to specific microenvironments within the lymph nodes, which we

call hotspots. The presence of hotspots suggest that, like foraging animals, T cells

may respond to features of their environment in order to guide their search (Gordon,

1994; Viitala et al., 1995).

Prior work has characterized the movement of foraging animals using both CRW

and Lévy walks. Lévy walks in particular have been suggested as optimal to maxi-

mize foraging rate (Viswanathan et al., 2002; Mempel et al., 2004) [sic: Memple is an

incorrect citation for this]. Our work suggests that in order to balance maximizing

repeated (total) contacts with maximizing new (unique) contacts, the LogMCRW

may be more e↵ective. More generally, walks with heavy tailed step length distribu-

tions and correlation among turning angles may be most e↵ective at balancing the

thoroughness and extent of search. In foraging animals as well as searching T cells,

natural selection may opt for movement that is e↵ective in a variety of circumstances,

even if that movement is di�cult to describe analytically.

T cells provide a unique window into biological search strategies because so many

searchers can be visualized rapidly in relatively intact natural conditions. Such

movement patterns can be included in agent-based models, even if they are not easy

to present in closed form equations. Our data suggests that the LogMCRW strategy

might be a better approach than either Brownian or Lévy walk in situations that

need to balance repeated contacts with already-found targets and discovery of new
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items. Additionally, T search for patchily distributed DCs (Mempel et al., 2004) in

the LN may demonstrate response to cues, similar to other collective foragers such

as ants collecting patchily distributed resources in natural habitats (Gordon, 1994).

In contrast to previous assumptions about simple random motion, our analysis

shows that T cell movement in lymph nodes is complex, and involves correlation,

variation in step lengths, and heterogeneity in response to local environments. The

deviation from idealized models reflects the immunological need to balance the spatial

extent and local thoroughness of search. The complex movements of T cells in LN

provide a window into biological search strategies and how natural selection may

balance multiple objectives in a variety of biological contexts.

3.8 Materials and Methods

3.8.1 Ethics statement

The protocol was approved by the IACUC at the University of New Mexico (protocol

# 10- 100487). The breeding and maintenance of mice used in this research conform

to the principles outlined by the Animal Welfare Act of the National Institutes of

Health. All e↵orts were made to minimize su↵ering with use of ketamine and xylazine

when appropriate. Euthanasia was performed by isofluorane overdose.

3.8.2 Mice

C57BL/6 mice were from Jackson Laboratories (Bar Harbor, ME). All mice were

bred and/or maintained in a specific pathogen-free condition in barrier facilities
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(Albuquerque, NM) and conform to the principles outlined by the Animal Welfare

Act and the National Institutes of Health guidelines.

3.8.3 T cell observations using two-photon microscopy

Lymph nodes were prepared according to the protocol described previously (Al-

lenspach et al., 2001; Bousso et al., 2002; Letendre et al., 2015; Matheu et al., 2007).

T cells were purified by nylon wool or by negative selection using the pan-T cell kit

(Miltenyi Biotec) as previously described by Cannon et al. (2013) and purified T

cells labeled with either 1µmol dm�3 CFSE (Invitrogen) or 5 µmol dm�3 CMTMR

(Invitrogen, Carlsbad, CA). 5 to 10⇥ 106 labeled T cells were injected I.V. into re-

cipient mice and inguinal lymph nodes were removed 15-/8 hours later and imaged

using two photon-imaging.

Imaging experiments were performed using either a workstation with a Bio-Rad

Radiance 2000 scanner mounted on an Olympus upright microscope with a chamber

at 37 �Cor a 2-photon microscope in the Fluorescence Microscopy Facility in the UNM

Cancer Center with a mode locked Ti:Sapphire infrared laser (Coherent Ultra II;

tunable from 680-1080 nm; avg. power 3.5W) for multiphoton fluorescence excitation

on a Zeiss Axiovert 200 stand. For the Bio-Rad 2P, explanted lymph nodes were

placed on a glass coverslip in the chamber. The sample is perfused with a 37 �C

solution of DMEM (phenol red free, Gibco) bubbled with 95% O2 and 5% CO2. T

cell motility within a lymph node was monitored in the T cell area at a minimum of

50-70 µm below the surface of the node. For the Zeiss 2P, the microscope stand is a

Zeiss Axiovert 200 with motorized XY stage and IR-corrected long working distance

objectives (25X:multi-immersion and 40X:water immersion) and image acquisition
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via a Zeiss LSM510 scanhead. Ex-vivo tissue and organs are maintained during

microscopic observation in a stage microincubator system (LCI-Live Cell Imaging)

equipped with heating, humidity, CO2 atmosphere and perfusion. Explanted lymph

nodes were placed on a glass coverslip in the chamber. The sample is perfused with

a 37 �C solution of DMEM (phenol red free, Gibco) bubbled with 95% O2 and 5%

CO2.

For 4D analysis of T cell motility, multiple stacks in the z-axis (z step = 3 µm) were

acquired every 15-20 s (depending on the number of z stacks acquired) for 15-40 min,

with an overall field thickness of 40-60µm. Cell motility was analyzed with Imaris

software (version 6; Bitplane). Tracks that lasted fewer than 3 time steps (duration

filter in Imaris) were not taken into account in the analysis. Length filter (threshold

of 17 µm= 3 times the diameter of the cell) Displacement2 filter (threshold of 300µm

= 17 µm ⇥ 17 µm) were also used to discard tracks of non-motile cells. Videos were

made by projecting the 4D information along the z-axis in a single plane.

The observation area covers approximately two thirds of the T cell zone of the

lymph node. Cell motility was analyzed with Imaris 6.0 (Bitplane AG, Zurich,

Switzerland). The point sequences generated by Imaris were used to create posi-

tion vectors joining adjacent cell locations (sample tracks Fig A.1 on page 178). The

Euclidean norm for each vector was calculated and divided by the time resolution to

produce speeds.

3.8.4 Distribution fitting

Following Fisher (1925) we use maximum likelihood estimation (MLE) to parame-

terize candidate PDFs. We fit probability model parameters using cumulative distri-
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bution functions (CDF), rather than by binning data which has been shown to bias

conclusions about random walk distributions (Goldstein et al., 2004). We define a

step as a vector of T cell motion that does not deviate beyond 15 from the original

direction (see Fig A.9 on page 185 for analysis of threshold dependency).

Five PDF models (lognormal, Maxwell, Gaussian, exponential, and power law) for

step length and speed were selected for analysis based on a combination of their neg-

ative log-likelihood scores, their importance in other biological processes, and their

previous use in modeling T cell movement. Our selection of the relative goodness of

fit (GoF) of each candidate PDF to empirical data was evaluated using likelihood

functions, Anderson-Darling (AD), Bayesian information criterion (BIC), corrected

Akaiki Information Criterion (AICc), and the Kolmogorov-Smirnov (KS) test.

Following (Clauset et al., 2009), we fit power laws using MLE and with the power

law PDF: P(x) = µ�1

xmin

⇣
x

xmin

⌘µ

, where x
min

is the smallest observed value, P(x) is

the probability of x occurring , and µ is the estimated parameter. We used the x
min

value with the best KS score of all possible choices as an estimator of the beginning

of a power law tail. The percentage of positions in a track in the power law tail gives

us a measure of the quality of the power law fit. Using this measure we show that a

power law fit to the population of observed steps excludes 94% of the data (Fig 3.1F

and H).

3.8.5 Autocorrelation and cross-correlations

Velocity autocorrelations were calculated following Qian et al. (1991) and Tarantino

et al. (2014). The autocorrelation function is the ensemble mean for the n � 1

possible delay times given the n vectors defining a T cell track. The result is a
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measure of how much T cell direction depends on previous directions as a function

of time delay. Our use of autocorrelation is distinct from the analysis of periodic

velocity vector magnitudes by Beltman et al. (2007), but the [sic] similar to that

done in Banigan et al. (2015). Letting v(pk(t)) be the unit velocity vector at time

t belonging to the kth path, we defined the cross-correlation function, C
cross

, to be:

C
cross

= hv(pk(t)) ·v(pm(t))i, 8k,m where pk and pm are T cells paths. This measures

the step angle dependence between T cell paths at the same moment in time, that

is, a measure of drift due to global e↵ects on the observation field.

3.8.6 Mean squared displacement

Mean squared displacement (MSD) coe�cients, commonly called the ↵ exponent

(Viswanathan et al., 1996; Codling et al., 2008; Bartumeus et al., 2005), were calcu-

lated using least-squares polynomial fit by numerically solving the associated Van-

dermonde matrix (Von Mises and Geiringer, 1964) and fit quality assessed with the

r2 measure. Parametric and linear fits were also made to mean displacement. In

Fig 3.1A we present only the first 10 minutes of observation (as was done in Mempel

et al. (2004); Worbs et al. (2007) and Friedman et al. (2010)) at which point the curve

reaches its first stationary inflection which in Tarantino et al. (2014) is indicative of

unconstrained motion and therefore appropriate for determining ↵. In addition, in

this study few tracks persist beyond 10 minutes and so the MSD signal also becomes

dominated by noise (Fig 3.1A top).
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3.8.7 Heterogeneity

We tested for heterogeneity by comparing track speed skew (Fig 3.4 on page 35)

and AIC evidence ratios as a function of mean speed. The sample skew of the

distribution of speeds was calculated using the method of moments applied to a

mean speed sliding window of width 0.125 µm/s progressing in 0.1 µm/s increments.

3.8.8 Search e�ciency simulation

The simulation to test T-DC interaction e�ciency was implemented as a continuous

(floating-point) 3D model written in C++. Boost libraries (Boo, 2013) were used

to generate variates drawn from model PDFs. Because the clustering and density

of targets can influence which movement types are most e�cient, we replicated the

estimated density of DCs and varied the degree of clustering in our simulations.

We use LN DC density of 2-5% as determined in (Hochweller et al., 2010) to

calculate a target DC density of 3.17⇥ 10�5 targets/µm3. Our observed fields have

an average volume of 6.3 ⇥ 106µm3. We scale the number of targets as a function

of field volume in order to maintain the same target density between simulation

fields. DCs were clustered into groups of 10 and were uniformly distributed within

spheres defining a cluster. By varying the sphere radius, we controlled the degree of

clustering from uniform to highly clustered. A 3D version of the Hopkins statistic

(Hopkins and Skellam, 1954) was used to measure the resulting non-uniformity of

target placement (Tables 3.3 on page 39 and 3.4 on page 39). In the Hopkins statistic

scores range from 0 to 0.5 where 0 is highly clustered and 0.5 indicates no clustering

(Fig A.6 on page 182).
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T cell tracks were observed and recorded as 3D coordinate sequences within a

bounding box defined by the visible section of the ex vivo lymph node. Idealized mod-

els (Brownian, CRW, Power Law, etc.) of search were parameterized by the speeds

and turning angles estimated from observation (see Distribution fitting). Searchers

in the idealized model start at the same initial positions as the observed T cells, and

exist in a volume equal to the observed field volume. Candidate search patterns were

generated for each of the 41 observation fields.

Our e�ciency measure is the number of targets found divided by the sum of the

time used by searchers. Since we modelled walks rather than flights (i.e. speeds are

finite) the sum of D(k) for all simulated tracks k was limited to the total distance

travelled by observed T cells. Therefore the average velocity of the population of

searchers is kept within the observed range. Based on an assumed radii of 5 µm for

DCs and T cells, targets were marked as discovered if a searcher track passed within

10 µm of a target point. We define two versions of the e�ciency measure, one that

increments its output value only when a target was not previously detected by that

searcher, and another that increments for all targets found. These two versions allow

us to record unique contacts and total contacts (Fig 3.3 on page 34).

The simulation measures the target encounter rate and determines, using the

Mann-Whiney test, whether the candidate search models search e�ciency is sig-

nificantly di↵erent from that observed in T cells. We use the Mann-Whitney test

because the observed and simulated distribution of e�ciencies is non-Gaussian. Sim-

ulations were replicated 100 times per field, producing 4,100 e�ciency data points

for each search model. The entire process was repeated 10 times in order to generate

confidence intervals for the simulation; in all this results in 41,000 e�ciency samples.
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3.8.9 Identifying hotspots and hot tracks

In order to test whether the environment within LNs influences T cell movement

we extend an analysis begun in (Fricke et al., 2015). Fields were discretized into

8000 µm3 cubes (the length of a cube is 20µm, approximately twice the diameter of

a T cell). We use the LogMCRW simulation as a null model and record the number

of times a location is visited by unique T cells in simulation (repeated 10 times).

We use a 2� (two-standard deviation) threshold for determining which locations are

visited more frequently in the observed fields than expected and call these hotspots.

This is repeated for each of the 41 individual observational fields. All other visited

locations are called cold spots. A comparison of the number of hotspots in simulation

and in the observed data gives an indication of how much behavior is not captured

by the simulation.

We define hot tracks to be T cell tracks that visit hotspots and cold tracks to be

T cell tracks that do not. We also examine the number of visits by hot tracks to cold

spots and hotspots. We also examine the distribution of step lengths and speeds for

hot and cold tracks.

For additional information on methods, see supplementary materials and methods

(Appendix A).
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3.10 Software

The software used in this chapter is available at:

https://github.com/BCLab-UNM/TcellAnalysis

https://github.com/BCLab-UNM/TcellSearchSim/releases/tag/18
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Von Neumann told me, ‘You should call it entropy, for two reasons.
In the first place your uncertainty function has been used in statistical
mechanics under that name, so it already has a name. In the second
place, and more important, no one really knows what entropy really is, so
in a debate you will always have the advantage.’
— Claude Shannon quoted in Tribus, M. and McIrvine, E. C. (1971).
Energy and information. Scientific American, 225(3):179–188

4.1 Author Contribution Statement

I am the lead author of this chapter under the supervision of Melanie Moses (As-

sociate Professor, UNM Computer Science, Biology, and Santa Fe Institute) and

Judy Cannon (Associate Professor, UNM Pathology, Molecular Genetics and Mi-

crobiology), with major contributions from Justyna Tafoya (Undergraduate, UNM

Mathematics and Statistics) and Janie Byrum (UNM Molecular Genetics and Mi-

crobiology). Janie produced the two-photon movies of T cells and dendritic cells
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under the direction of Judy Cannon. Justyna wrote software to apply the mutual

information calculation to the two-photon movies in various combinations.

4.2 Overview

Through the e↵orts of our collaborators at the UNM-HSC Department of Molecu-

lar Genetics and Microbiology, we now have access to two-photon recordings of T

cells and their dendritic cell (DC) targets in the same experiment. This allows us

to analyse the information theoretic relationship of T cells to DCs and so directly

measure interactions without having to model DC placement using estimates from

data published by other labs.

Though recruitment of T cells by DCs may seem to have obvious benefit, this

is not always the case. Mechanisms that concentrate T cells and DCs together

may serve to decrease interaction rates due to crowding e↵ects. We have observed

something similar in our simulations of ant foraging. The use of information to guide

ants to seeds can lead to congestion that hinders resource collection unless the signal

strength is balanced.

We measure the mutual information between images of T cells and DCs to de-

termine to what degree the location of DCs and T cells influence each other. This

begins to address directly the current assumption that näıve T cells perform an un-

guided search without regard to DC placement. An alternate hypothesis is that T

cells are guided to DCs by structures within lymph nodes (LNs). Two candidate

structures are the fibroblastic reticular cell (FRC) network (Miyasaka and Tanaka,

2004) and high endothelial venules (HEVs) (Donovan and Lythe, 2012).
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An alternative strategy would be to determine the locations of T cells and DCs,

and directly measure the distance between the cells. Many algorithms exist for

measuring the clustering of discrete objects in a plane that use variations on this

approach, and they would provide a characteristic distance. A barrier to this ap-

proach, however, is that the two-photon microscopy (2PM) data does not provide

reliable location data for DCs. That is, due to the irregular shape of DCs (from

which they derive their name), and their tendency to form large clusters it is di�cult

to discretise the fluorescence into individual cells. Conceivably a technique could be

applied that measures the distance between pixels instead of cells, but the fluores-

cence varies in intensity between DCs and T cells. While investigating the spatial

association between T cells and DCs we initially tried applying a threshold to pixels.

We discovered that our choice of the pixel colour intensity threshold entirely determ-

ined the degree of association that resulted. The benefit of mutual information is

that it measures the association of pixel values associated with the presence of T cells

and DC parsimoniously. Mutual information is also attractive because it provides a

natural baseline at 0 for which the interaction of pixel colours is uniformly random.

Deviation from that baseline exactly targets our question of interest: is the associ-

ation of T cells and DCs random or non-random, or in other words, is information

about the location of one cell type available to the other.

4.3 Significance

Our analysis of random search strategies in lymph nodes is predicated on the assump-

tion that nave T cells are not guided to target DCs through long-range interactions.
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(Germain et al., 2012) This is in contrast to activated T cells which commonly home

to their targets by following chemical gradients.

Our findings in Chapter 3 suggest that there is an over abundance of T cells in

some locations in LNs when compared to our LogMCRW model. We have dubbed

these locations hotspots (Fig. 3.5 on page 36). This is not surprising given the het-

erogeneous physical environment within the LN however an alternative explanation

is that this over-abundance is due to chemical or morphological guidance by DCs to

particular locations.

It has also been suggested that T cells may use structures, as opposed to chemical

gradients, within lymph nodes to guide T cells to DCs. The two candidate struc-

tures are networks of FRC which, it is hypothesised, T cells follow to find DCs that

congregate at certain points on the network. Alternatively, observations of DCs con-

gregating at HEVs, which serve as entry points into lymph nodes for T cells, have

led to a hypothesis that T cells sample DCs on entry into the lymph node. This is

analogous to a greeting line at a wedding where T cells the guests and the DCs are

the wedding couple coming in contact with each guest in turn. Empirical observa-

tions of T cells following the FRC network are qualitative and inconclusive. Beyond

informing our analysis of T cells movement patterns, i.e. as a purely stochastic pro-

cess, how they find DCs has medical implications. For example, HIV is known to

suppress FRC and T cell interactions (Zeng et al., 2012; Donovan and Lythe, 2016).

If T cells use the FRC network for DC localisation this would further suppress the

immune system.

In all the above cases we would expect there to be a co-localization of T cells and

DCs to a degree greater than that expected by chance. We use information theory

to measure the co-localization observed, as described in the next section.
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4.4 Methods

Figure 4.1: 2PM example image. T cells fluoresce in the red channel, DCs in green.
Credit: Janie Byrum.

Dendritic cells are tagged with CFSE dye that has excitation/emission wavelengths

of 492/517 nm (green). T cells are tagged with CMTMR dye which has an excita-

tion/emission wave lengths of 541/565 nm (red). For the remainder of this chapter,

we refer to the red fluorescence as T cells and the green fluorescence as DCs. As

shown in Fig 4.3 on page 69 this association does not always appear to hold. Some

images contain objects that fluorescence in both the red and green channels. The

association between T cells and DCs and the red and green channels for these objects

is unknown. These objects persist over time and will tend to increase the observed
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Figure 4.2: 2PM movie example frames (single layer). Left column shows green (DC)
channel fluorescence, the right column shows red (T cell) channel fluorescence. T
cells are labelled with red fluorescing dye, DCs are labelled with green fluorescing
dye. Color bars indicate the intensity of fluorescence.
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Figure 4.3: Volumetric rendering of a single 3D 2PM movie frame. Mouse
2, LN 1, Field 2, Frame 1. (a) Red (T cell) colour channel intensity and (b) green
(DC) colour channel intensity. The image contains regions of fluorescence (arrows)
that do not appear to be associated with T cells or DCs, for example, the region of
intensity in both red (T cell) and green (DC) channels in the lower left hand corner
of the 3D frame, possibly indicating a physical object in the frame. Photoelectric
noise is visible as a scattering of isolated non-zero pixels. The frame height in the
oblique view is not to the same scale as the width and depth since the frame is lower
resolution in the z-direction. Pixels with a colour intensity below 50 are transparent
in this figure. We use all pixels in our analysis.
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MI(Green, Red)
MI(Green, Red Shuffed)
MI(Red, Red)

Region Side Length (µm)

Figure 4.4: Dependence of Mutual Information on Region Size. Region
size impacts the mutual information calculation. We use square (2D) 10 µm⇥10 µm
regions because this is about the same size as a T cell. The mutual information
below this region size decreased, with the limiting case being zero information for
regions of 1 pixel. The vertical dashed line is the region size we use (10 µm per side)
Mean of 30 frames sampled from 7 experiments. Bars are the 95% CI.

mutual information. Also, the images contain noise with an unknown association to

physical objects. This noise follows a Poisson distribution and is due to the photon

arrival times at the photodetector device, and variance in photon emission mediated

by thermal fluctuations. (Pawley and Masters, 2008). The e↵ect of this noise is to

reduce the mutual information between the DC and T cell channels. Fluorescence

in the red channel is therefore strongly correlated with the presence of T cells, and

green with DCs but the association is not strict. While we refer to the red as T cells

and green to DCs these caveats should be kept in mind.

Three-dimensional images are recorded over time. The distribution of DCs in

lymph nodes is poorly understood but, as we have shown, the configuration of targets

is important to predicting the optimal pattern of search for T cells. We measure the
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aggregation of DCs using the Hopkins index (Hopkins and Skellam, 1954). The Hop-

kins index takes the ratio of k-neighbour distances between targets to k-neighbour

distances between targets and a uniform distribution of locations.

In order to determine the extent to which DCs and näıve T cells associate we

calculate the mutual information of the green (DC) channel image, G, and the red

(T cell) channel image, R, in each frame. Where entropy is defined to be:

H(X) = �
X

x

p(x) log
2

p(x) (4.1)

and the joint entropy:

H(X, Y ) = �
X

x

p(x, y) log
2

p(x, y) (4.2)

Entropy is a measure of uncertainty in terms of bits of information. The maximum

entropy for a given system occurs when the probability of any particular state value

is uniformly distributed. The mutual information MI(T,D) is,

MI(T,D) = H(T ) + H(D)� H(T,D), (4.3)

in which, H(T ) and H(D) are the entropies of the red (T cell) and green images,

H(T,D) and is their joint entropy. This technique has been extensively used in med-

ical image registration Pluim et al. (2003). Mutual information provides a measure

of the reduction in uncertainty about the red (T cell) pixel values given the values

of the green (DC) pixels, and vice versa. The code for calculating these values using

Matlab is included in Appendix A on page 176.
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We are interested in the spatial association of cells rather than their exact coloca-

tion. The mutual information of each pixel in the source image is necessarily zero

since DCs and T cells cannot occupy the same physical space. There are pixels that

have positive values in the T cell and DC channel in the 2PM images, but this is

due to artefacts in the image (Fig 4.3 on page 69). Rather, we map pixel-space into

10 µm regions. The regions are large enough to capture pixels that would correspond

to a DC and a T cell if they are adjacent, but not small enough to be contained

entirely within a T cell. Regions are assigned the average value of the pixels they

contain.

Since MI(T,D) depends strongly on the internal entropies, H(T ) and H(D), of

the images we compare the value of MI(T,D) to that of MI(T,D0), where H(D0) is

the green signal from a di↵erent experiment. H(D0) should be unrelated to T and so

provide a reasonable baseline while preserving the DC signals internal entropy. The

internal entropies are determined by the distribution of pixel values in the frame.

The calculation of mutual information includes the calculation of the joint entropy

(Eq. Eq. (4.2) on the previous page). The calculation of the joint entropy involves

building a table containing a count of the number of regions with the same intensity

in the T cell and DC frames. Since we are averaging over pixel values the number of

possible values increases and the probability of observing the same values in the same

region from both channels decreases. This may cause our method to underestimate

the association of T cells and DC. In order to qualitatively determine the sensitivity of

our method we observe the rate at which hMI(Tt, Tt+�t)i and hMI(Dt, Dt+�t)i, 8�t >

0, fall as �t increases, here t is time and �t is separation in time. That is we plot

the disassociation if T cells and DCs from their start location over time, as measured

by average mutual information (Fig. 4.6 on page 74). The mutual information falls
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as frames are separated by time providing evidence that our method can distinguish

between cells in proximity and those that are not.

The analysis of DC clustering has been performed using the Hopkins index. The

result is that DCs appear highly clustered indicated by the Hopkins index approach-

ing 1.

4.5 Results

MI(DC, T cell)
MI(T cell, Shuffled T cell)
MI(DCs, DC)
MI(T cell, T cell)
MI(DC, Shuffled DC)
MI(DC, Shuffled T cell)

Figure 4.5: Mutual information over change in time (individual). 190 images from 7
experiments. 2 mice 4 lymph nodes. Region level mutual information with baseline
mutual information between di↵erent experiments. T cell and DC co-location is
higher than for any of the shu✏ed baselines and so is non-random.
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(DC, T)
(DC, Shuffled T)

DC
T cells

Figure 4.6: Mutual information over time. 190 images from 7 experiments. 2 mice
4 lymph nodes. Region level mutual information with baseline mutual information
between di↵erent experiments for comparison. Both DCs and T cell mutual inform-
ation decay over time. The black dashed and blue dot-dashed line correspond to Fig.
4.5.

We use mutual information to measure the correspondence in space between T

cells and DCs. However, mutual information depends not only on the spacial corres-

pondence of colour values in the images, but it also depends on the internal entropy

of the images being compared. This is because the mutual information between two

images cannot exceed the information contained in either of the images. Mutual

information provides only a relative measure of similarity and requires contextual-

ization. We measure the mutual information of four reference points in order to

provide this context: 1) the green (DC) channel with itself, 2) the red (T cell) chan-

nel with itself, 3) the shu✏ed red (T cell) and green (DC) channels, and 4) the green

(DC) channel with the red (T cell) channel from a di↵erent experiment. The mutual
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information of colour channels with themselves provides maximum values given the

internal entropy of the channels. The shu✏ed and inter-experiment mutual inform-

ation provide minimum values given the internal channel entropy.

Knowing locations and colour intensity of the red (T cell) fluorescence channel

communicates 0.9147 95% CI [0.8870, 0.9424] bits of information about the location

of fluorescence in the green (DC) channel produced by dyes associated with DCs.

In comparison, the mutual information of disassociated red (T cell) and green (DC)

channels, either because they are taken from di↵erent experiments or because the

position data was randomised through shu✏ing are 0.2617 95% CI [0.2617, 0.2697]

and 0.3789 95% CI [0.3363, 0.4214] respectively. The mutual information of the green

(DC) and red (T cell) channels with themselves are 5.3506 95% CI [5.2981, 5.4032]

and 4.4224 95% CI [4.3849, 4.4599] bits respectively (Fig 4.5 on page 73).

4.6 Conclusions

Mutual information analysis indicates that T cells and DCs are associated in space

to a greater degree than uniformly random associations predict. However, the degree

of association appears to be weak, only communicating 0.54 bits of information more

than randomly shu✏ed channels, and 0.65 bits more information than the mutual

information of T cells and DCs from di↵erent fields. We describe this as a weak

association in comparison to the upper reference point in which the green (DC) and

red (T cell) channels are compared to themselves (5.3 and 4.4 bits).

Through we characterise the interaction as weak, we have only one example sys-

tem. Measurement of the mutual information between T cells and antigen-bearing

cognate DCs would provide more context. The activation process is known to cause

75



www.manaraa.com

Chapter 4. Spatial Association of T cells and Dendritic Cells

the association of T cells and DCs and would presumably result in higher mutual

information between T cells and DCs. Such an experiment would validate or invalid-

ate the technique and provide mutual information values for a system in which cells

are known to associate.

We are also analysing the association of CCR7-knockout T cells. CCR7 is known

to be important for T cell signalling, a change in the measured association of CCR7-

deficient T cells and DCs may indicate CCR7-mediated näıve T cell-DC interactions.

4.7 Software

The software used in this chapter is available at:

https://github.com/BCLab-UNM/TcellAnalysis
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5.1 Author Contribution Statement

I am the first author of this chapter under the supervision of Melanie Moses (As-

sociate Professor, UNM Computer Science, Biology, and Santa Fe Institute). Judy

Cannon (Associate Professor, UNM Pathology, Molecular Genetics and Microbiol-

ogy) co-authored the immunology sections. Joshua Hecker (Postdoc, UNM Computer

Science) provided the iAnt simulator and co-authored the related methods section.

5.2 Publication Notes

Citation: G.M.Fricke, J.P.Hecker, J.L.Cannon and M. E. Moses, “Immune-inspired

search strategies for robot swarms,” Robotica (2016) volume 00, pp. 119. Cambridge

University Press 2016 doi:10.1017/S0263574716000382
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Copyright: ©Cambridge University Press. License for use in this dissertation is

included in Appendix C on page 207.

5.3 Abstract

Detection of targets distributed randomly in space is a task common to both robotic

and biological systems. Lévy flights have previously been used to characterize T cell

search in the immune system. We use a robot swarm to evaluate the e↵ectiveness

of a Lévy search strategy and map the relationship between search parameters and

target distributions. We show that the fractal dimension of the Lévy search which

optimises search e�ciency depends strongly on the distribution of targets but only

weakly on the number of agents involved in search. Lévy search can therefore be

tuned according to the target distribution while also being scalable. Implement-

ing search behaviours observed in T cells in a robotic swarm provides insight into

swarm robotic search strategies; additionally, the flexibility and scalability of Lévy

walks may explain why Lévy-like movement has been observed in T cells in di↵erent

immunological contexts.

5.4 Summary

Detection of targets distributed randomly in space is a task common to both robotic

and biological systems. Lévy flights have previously been used to characterize T cell

search in the immune system. We use a robot swarm to evaluate the e↵ectiveness

of a Lévy search strategy and map the relationship between search parameters and

target distributions. We show that the fractal dimension of the Lévy search which
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optimises search e�ciency depends strongly on the distribution of targets but only

weakly on the number of agents involved in search. Lévy search can therefore be

tuned according to the target distribution while also being scalable. Implement-

ing search behaviours observed in T cells in a robotic swarm provides insight into

swarm robotic search strategies; additionally, the flexibility and scalability of Lévy

walks may explain why Lévy-like movement has been observed in T cells in di↵erent

immunological contexts.

5.5 Introduction

Robot swarms typically consist of many small, relatively simple and inexpensive

robotic agents that work collectively toward some common goal (Brambilla et al.,

2013). Swarm robotic algorithms are often inspired by biological behaviours that

generate emergent collective behaviour from the interactions of robots and their en-

vironment (Sahin, 2005). A major research challenge is the development of swarm

robotic algorithms that allow e↵ective navigation through complex real-world en-

vironments without centralized control (Winfield et al., 2005; Hecker and Moses,

2015).

Foraging is a canonical problem in swarm robotics in which robots have to locate

targets distributed in space, and often to transport those targets to some specified

location (Winfield et al., 2005). Hecker and Moses (2015) demonstrate an ant-in-

spired algorithm (the central place foraging algorithm (CPFA)) that is error tolerant,

adaptable to di↵erent resource distributions, and scalable across swarms sizes. Here

we present an immune-inspired search pattern that can be adapted to replace the cur-

rent, more complex, search subtask in the CPFA. An advantage of a simpler pattern
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is that it can be more easily analysed and tuned for maximum search performance

given di↵erent resource distributions and swarm sizes. The search pattern discussed

in this work is simple, e�ciently scales with the number of searchers, is robust to

error, is adaptable to the distribution of targets, and requires no centralized control.

As robots have become smaller, cheaper, and are increasingly expected to operate

in natural environments, designing flexible and error tolerant algorithms for robot

swarms has become more important. Swarms tend to be made up of robots built

from cheaper components than monolithic robots, which increases the chance of

component failure and decreases the accuracy of actuation and sensor input. The

small size of swarm robots and operation in natural environments also leads to robot

loss. Swarms must be designed to be resilient to individual robot loss and to the

e↵ects of robots producing erroneous data.

Robustness is the ability to cope with the loss or malfunction of individuals. In

biological systems robustness is promoted by redundancy and decentralized control

that avoids single points of failure. Scalability is the ability to perform well with

di↵erent group sizes. Search strategies that can be tuned to optimise performance

for di↵erent target configurations we call adaptable.

The success of robot swarms searching for targets in an unknown environment

depends on the adaptability and robustness of the search strategy employed. Such

tasks include surveying planetary surfaces and interplanetary space (Fink et al.,

2005), land and sea mine clearance (Weber, 1995), pollution mapping by subsurface

robots (Hu et al., 2011), and survivor location in hazardous environments (Birk and

Carpin, 2006) as well as military applications.

Sensor and actuation error are crucial motivation for using a stochastic search

strategy. Though most robot swarms remain confined to simulation (Brambilla et al.,
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2013), error models can only be realistically derived from an embodied physical

system. This leads us to use a swarm of iAnt robots for which we have a realistic

error model to explore the stochastic search strategies observed in T cell search. The

hardware error model was developed from search trials using 6 hardware robots. We

modify the simulation described in Hecker and Moses (2015) that allows us scale the

immno-inspired search pattern to 32 robots. The simulation was written in tandem

with development of the physical robots, and tested to make sure that the simulation

reproduces the performance of the physical iAnts (Hecker et al., 2013).

An argument that particularly applies to swarm robotics and motivates our use of

a random search strategy has recently been made by Ackley et al. (2012). Computa-

tional processes that guarantee correctness are no longer tenable as systems increase

in size and complexity; rather, large distributed systems should sacrifice determinism

for robustness. Von Neumann (1951), shortly after the development of the ENIAC,

recognized that computing systems would need to take on aspects of biological sys-

tems that are both robust to the failure of individual parts, and which are inherently

stochastic, if computing systems were ever to become truly scalable.

5.5.1 Search in Immunology

The requirements for search by robotic swarms are similar to those encountered by

biological searchers, such as T cells in search of pathogens. Cells of the immune

system are under selective pressure to rapidly find and eradicate pathogens. T cells

search collectively but without centralized control (Groom et al., 2012; Sung et al.,

2012; Textor et al., 2014). Cells have limited ability to sense and navigate, and they

do so based on stochastic processes that are prone to error.
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As in swarm robotics, the search patterns of T cells and other cells in the immune

system must be robust, e�cient, and scalable. Detecting and destroying pathogens

early during an infection, before they become unmanageable, relies on e�cient search

patterns. The immune system must also be robust to the loss of individual cells and to

malfunctioning cells, which in the worst case do not just result in failure to eradicate

disease but in the destruction of the host’s own cells.

T cells are crucial to the adaptive immune response: activation of T cells leads

to B cell production of antibody as well as antiviral immune responses. T cells

search for dendritic cells (DCs) carrying parts of pathogens (antigens) which they

display in the T cell zone (Figure 5.1a on the next page) of lymph nodes (LNs).

Interaction of T cells with DCs displaying cognate antigen leads to T cell activation.

Activated T cells move to the site of infection, where they search for and destroy

cells displaying the antigen that activated them (Alberts et al., 2002). Within LNs

each T cell searches a space approximately 106 times its own volume. If DCs are

randomly located throughout the T cell zone of a LN, T-DC interactions impose

a requirement for T cells to search e�ciently. E�cient search is crucial to mount

a timely and e↵ective immune response against pathogen populations that often

expand geometrically (Mirsky et al., 2011b).

When an immune response is triggered, activated T cells proliferate geometrically

(De Boer et al., 2001), going in a matter of days from a population on the order of

10 cells to millions. The search strategy must be both adaptable to given di↵erent

target distributions, and scalable to vast changes in the number of T cells.

Infection can occur anywhere in the body, including but not exclusive to gut, lung,

skin, vaginal tract tissue, and the brain. In order to promote an e↵ective immune
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(a)

50 μm

(b)

(c)

Figure 5.1: T cell motion was observed in mouse lymph nodes (LNs). The resulting
data was translated into a model of search using a Lévy walk. (a) Schematic diagram
of an LN in which T cells search for dendritic cells (DCs) (Fricke et al., 2013), (b)
Two-photon image of T cell zone. T cells fluorescing in red and green, (c) T cell
tracks in a single observation field (1 of 7).
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response T cells must be capable of e�cient search in many di↵erent tissues. Each of

these tissues may have di↵erent properties, including their e↵ective dimensionality.

T cells search an essentially 2-dimensional space in the epithelium (Ariotti et al.,

2012), while searchers in the lungs and brain must navigate higher dimensional search

spaces. Tissues also di↵er dramatically in the cell types that are in each tissue,

the physical structures that T cells need to migrate through, and the extracellular

matrix proteins. T cells show remarkable ability to search and move through multiple

environments. Pathogens also exhibit an array of growth strategies and patterns

(Lindquist et al., 2004; Miller et al., 2004). T cell search strategies must be capable

of e↵ectively finding targets in various spatial configurations and in a variety of

environments.

Cells infected with bacteria, parasites, or viruses can all be search targets of T

cells in peripheral tissue. In LNs the situation is more complex since only when a T

cell finds a matching DC does activation occur. The size of the subset of T cells that

match each DC varies by pathogen (Regner, 2001), so it is not clear what proportion

of T cells will match target DCs. In addition, the number of DCs bearing cognate

antigen is highly dynamic with a small initial population early in an infection but

quickly growing (Alberts et al., 2002). While it is important that as many DCs are

scanned by each T cell as possible, it is less clear to what degree the total number

of DCs scanned by the T cell population a↵ects the immune response. The robot

search problem is simpler in that each target is treated as being equally valuable to

all robots, more similar to T cell search for pathogens in periphery.

T cell motility is an active area of research and multiple models of search have

been proposed, for example, in peripheral tissues (Potdar et al., 2008; Harris et al.,
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2012) and in LNs (Banerjee et al., 2011; Donovan and Lythe, 2012; Fricke et al.,

2013; Gérard et al., 2014; Banigan et al., 2015).

5.5.2 Lévy Search

Lévy walks are described by step lengths that fit a power law distribution Most step

lengths are small, but with a heavy-tail, that is, a decreasing probability of larger

steps and a non-zero probability of steps of any length. Lévy walks assume that

the direction of search at each step is drawn from a uniform distribution and is

independent of previous steps (i.e. is isotropic and Markovian) (Mandelbrot, 1983;

Viswanathan et al., 1996).

Lévy search patterns are stochastic fractals. The probability density function

(PDF) that governs the distribution of step lengths used to generate a particular

Lévy pattern is a power law:

L(x) = x�µ (5.1)

where L(x) is the probability of a searcher moving in a straight line for distance

x. The exponent µ that determines the shape of the PDF is known as the Lévy

exponent.

When search consists of a sequence of disconnected points, the motion is called

a Lévy flight (the searcher is flying or jumping from point to point). Since we

consider space between points to be part of the area searched, and therefore the

intervening space is traversed with some finite velocity, we are working with a Lévy

walk (Shlesinger and Klafter, 1986). We refer to the displacement (shortest distance)

between consecutive positions as the step length.
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Chapter 5. Adaptation of Lévy Exponents to Target Configuration

Stochastic search has been studied extensively by biologists, especially mathemat-

ical ecologists. Ecologists typically state the problem of e�ciency in the interaction

of searchers and targets as one of foragers and food items. Foraging problems and

immunological search have much in common.

Lévy flights as models of search were first developed in order to explain the

disparity between observed super-di↵usive animal motion and simple random walk

models. Animals searching for food tend to maintain relatively straight trajectories

for longer distances than would be produced by a simple random walk. The Lévy

walk foraging hypothesis is an explanation for this observation proposed by physicists

and ecologists. Lévy walks have been used to explain the search patterns of numerous

species including reindeer (Mårell et al., 2002), albatross (Viswanathan et al., 1996),

and human foragers (Raichlen et al., 2014). James et al. (2011) provides a more

comprehensive list along with criticism of Lévy walk analysis.

Whether these search patterns are truly power law distributed is a matter of

ongoing debate (Bartumeus et al., 2005; Edwards, 2011; Humphries et al., 2012).

The issue is clouded in part because a true power law distribution of step lengths is

clearly impossible in a finite space. The question then is whether animals or cells use

a truncated power law distribution of step lengths constrained by the environment

in which they are searching.

Similarly, immunologists have recently considered Levy walks as models that

capture superdi↵usive movement of T cells both during search of peripheral tissues

and LN (Harris et al., 2012; Fricke et al., 2013).

In this work we examine the properties of Lévy search patterns because they

provide a model of search that captures heavy-tailed movement patterns observed in

T cells, are simple enough to be translated into robots, and exhibit the properties
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of robustness, scalability, and adaptability that are required of T cells and robot

swarms.

We explore the relationship between target distributions, the number of robot

searchers, and µ in Equation Eq. (5.1) on page 85 optimised by a genetic algorithm

(GA). We confine our robots to a 100m2 arena, which places an upper limit on the

distance searchers can travel without turning. Similarly, since power laws diverge as

step lengths approach zero, we define a minimum step length for our robots to be

8 cm. Despite these constraints, we find Lévy walks to be a very useful abstraction

of search patterns. We show that the mathematical properties of this search pattern

that ecologists and physicists found so compelling can be used to engineer a search

pattern with desirable properties.

5.6 Related Work

5.6.1 Robotic Lévy Search

In work related to our own, Van Dartel et al. (2004) evolved neural controllers for

agents searching a simulated world with targets drawn from a uniform distribution.

The authors observed convergence of the best performing robots to a Lévy walk

pattern defined by a power law PDF exponent of 2 (µ = 2 in Eq. (2.1) on page 18),

consistent with optimal foraging behaviour described by Viswanathan et al. (1999).

Swarm robot simulations have used Lévy walks in combination with chemotaxis-

inspired gradient sensing (Nurzaman et al., 2009) and artificial potential fields (Su-

tantyo et al., 2010) to e�ciently search unmapped spaces with range-limited sensors.

These papers fix the Lévy exponent to 2 the result from Viswanathan et al. (1999)
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and explore a uniformly random distribution of targets. In contrast, in this work we

evolve the Lévy walk exponent for combinations of target configurations and numbers

of searchers.

Sutantyo et al. (2010) find that when collisions increase significantly with the

number of searchers, performance scales sub-linearly. The rate of collision between

searchers is determined by a number of factors, including the e↵ectiveness and cost

of collision avoidance algorithms and size of searchers relative to the rate of displace-

ment. Hecker and Moses (2015) find that even when collisions are ignored, e�ciency

does not scale linearly with the number of robots. Our simulation similarly ignores

collisions, allowing us to isolate the e↵ect of oversampling on search performance.

Keeter et al. (2012) use underactuated robots implementing Lévy walks in a 3D

aquatic environment to search for four uniformly distributed targets. They sample

various values of µ in 0.5 increments in the range 1.1 < µ < 3. Keeter et al. find

that in simulation there is a monotonic improvement in search time as µ approaches

their lower bound of 1.1.

All the related work above examines search for uniformly distributed targets, but

naturally occurring resources tend to be spatially heterogeneous (Dunning et al.,

1992; Hecker and Moses, 2015). Here we are interested in how the configuration of

targets with varying degrees of clusteredness influences stochastic search. We relate

the size of the swarm to the optimal Lévy exponent, µ rather than using a fixed

swarm size.

Beal (2015), examine the e↵ectiveness of Lévy flights as a mechanism for posi-

tioning robots such that they provide even coverage of a given area with obstacles.

Beal identifies a trade-o↵ between aggressiveness and evenness in the pattern of dis-

persal. These concepts have interesting connections to the ideas of intensity and
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extent in our own work. However, the formulation of the coverage problem and the

search problem are significantly di↵erent (the lack of discrete targets in the coverage

problem, for example), and so our approach does not map directly to theirs.

5.6.2 Lévy Search in Immunology

Harris et al. (2012) examined T cell search patterns in the brains of Toxoplasma

gondii infected animals. They found the pattern of motion to be superdi↵usive, and

consistent with a generalized Lévy walk with L(x) / x2.15, µ = 2.15 in Eq. (5.3) on

page 92. In supplemental material the authors also describe a computer simulation

of Brownian motion and the generalized Lévy walk search in a sphere. They report

that the Lévy walk was able to detect targets an order of magnitude more e�ciently

than Brownian motion.

In our own work (Fricke et al., 2013) we also find an order of magnitude decrease

in first contact times when using a Lévy flight vs. Brownian search. We have recently

investigated the search patterns of T cells searching for DCs in LNs and implications

for e�ciency of search (Fricke et al., unpublished data). The di↵erence between

Lévy walks and Brownian walks decreases, though is still significant, when the e�-

ciency metric is normalized by the total distance, and time, searchers cover. We find

that T cells use strategies that have aspects of Lévy walks, but that Lévy walks by

themselves are unable to explain the full range of search behaviour. In particular we

find that T cells balance extent and intensity of search. This is not surprising given

that immunological search is the result of extremely complex interactions between

numerous cell types communicating via a range of chemical signals. Despite this,

we find the Lévy walk foraging hypothesis (Viswanathan et al., 1999) to be a useful

89



www.manaraa.com
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model of T cell search both in peripheral tissue (i.e. the brain (Harris et al., 2012)).

Lévy walks also provides a simplified model of of T cell search in LNs (Fricke et al.,

2013). In addition, providing a useful engineering approach for designing searchers

with desirable properties.

5.6.3 Lévy Search with Heterogeneous Target Distributions

Raposo et al. (2011) model the relationship between heterogeneity of searcher target

distance and optimal µ values. Using a 1-dimensional analysis they predict that de-

creasing µ will increase the success of target encounters in heterogeneous landscapes.

They suggest that this theoretical result generalizes to the 2-dimensional case. They

do not test this hypothesis as we do here.

5.7 Stochastic Fractal Search

Deterministic search strategies may be e↵ective in relatively fixed environments and

when localization is error free. Theoretically, systematic raster scan search outper-

forms random search (Bénichou et al., 2011; Keeter et al., 2012). However, in envi-

ronments where target distributions are unknown or change over time, randomized

search strategies are more e↵ective (Stephens and Krebs, 1986; Acar et al., 2003).

Deterministic strategies depend on accurate information about the searchers’ current

location, and the ability to move from the current location to the next without error,

which is di�cult in practice even with global positioning systems (Humphreys et al.,

2008; United States Department of Defense, 2008; Maier and Kleiner, 2010).
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Errors in sensor input and in actuation introduce randomness into even appar-

ently deterministic processes. iAnt robots are underactuated (i.e. are unable to

follow arbitrary trajectories without error) and therefore the problem of error free

navigation from one point to another is especially di�cult. In contrast T cell motility

mechanisms are holonomic with motion governed by cytoplasmic flow into membrane

protrusions and an actin cytoskeleton that can be rapidly reoriented in any direction.

However, observation of T cells demonstrate that their motion is stochastic, which

may be due to environmental or intrinsic factors (Linderman et al., 2010; Celli et al.,

2012; Harris et al., 2012; Textor et al., 2014). Like many swarm robots T cells sensors

are short range, being limited to molecular interactions at the cell surface (Alberts

et al., 2002).

If the search area or volume is greater than that which can be explored com-

pletely in the time allowed, an e�cient solution must involve a trade-o↵ between

intensity, or the degree to which the local area has been searched and extent, the

displacement of searchers from their starting locations (Méndez et al., 2013). The

Hausdor↵ fractal dimension (H) is a compact measure of this trade-o↵ between in-

tensity and extent. Increasing extent, by decreasing the Hausdor↵ fractal dimension

(H), results in increased displacement of searchers from their start positions as a

function of time. The fractal dimension of a search pattern is a measure of the frac-

tion of locations visited in a search space. For example, Brownian motion has fractal

dimension H = 2, meaning that, asymptotically, a Brownian search pattern visits all

positions in a 2-dimensional space. As far as we are aware the fractal dimension of

Lévy walks has not been formalized, therefore we calculate H for Lévy flights. Since

Lévy flights visit only endpoints of steps, H is the dimension of the visited point-
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set (Seshadri and West, 1982; Mandelbrot, 1983). H for Lévy walks will be strictly

greater than that for Lévy flights. We hope to investigate this in future work.

The PDF governing Lévy flights as formulated in Eq. (5.2) not only describes

the probability, L(x), of observing a step length of x, but also relates the resulting

stochastic fractal to H:

L(x) =
�

x
min

✓
x

x
min

◆�1��

(5.2)

where, x is the step length, xmin is the least possible step length, and � determines

the decay rate of the step length probability distribution. H = � in Eq. (5.2)

(Mandelbrot, 1983; Hughes, 1996). The coe�cient x
xmin

normalises the area under

the curve to be one and so enforces that Eq. (5.2) is a PDF. Since x
min

is a constant,

and labelling the exponent µ results in Eq. (5.1) on page 85.

H = µ� 1 (5.3)

Brownian motion has H = 2 (Taylor, 1961) and µ = 3. The resulting walk is

maximally intense when embedded in a 2-dimensional space.

The mean squared displacement (MSD), a measure of search extent, of a popu-

lation of searchers is also characterized by a power law:

MSD =
⌦
(~r(t+�t)� ~r(t))2

↵ / t↵ (5.4)

where ~r(t) is the position vector of an agent at time t and ~r(t+�t) is the location

of an agent after some time increment �t. The di↵erence between ~r(t) and ~r(�t) is

the displacement between searcher positions at t and �t. Angle brackets indicate the

92



www.manaraa.com
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ensemble average over the population of searchers. The MSD exponent ↵ describes

the rate of displacement over time and is related to search extent. As ↵ increases

search extent increases.
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Figure 5.2: Stochastic fractal search patterns resulting from a sample of 10,000 steps
and uniform turning angles with a power law distribution of steps. The power law
distributions of step lengths A) µ = 3, the Hausdor↵ fractal dimension (H) = 2,
↵ = 1 B) a Brownian pattern of search. C) µ = 1.5, H = 0.5, ↵ > 1, and D) a Lévy
walk with lower dimensionality and greater extent.

The walks produced by Lévy exponents between 1 and 3 are more extensive than

Brownian motion, but have lower H and so are less intensive. As µ approaches the

limiting value of 1 the MSD and extent of search becomes infinite.

Figure 5.2 shows two search patterns. In panel (A) µ = 3 resulting in (B), a

Brownian pattern of search with di↵usive motion; H = 2 and ↵ = 1 in Eq. (5.4)

on the preceding page. The displacement of a Brownian random walk grows as the
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square root of time. Panel (C) shows a power law distribution resulting in a Lévy

walk with µ = 0.5, and a superdi↵usive pattern of motion with ↵ > 1. MSD describes

how far searchers are likely to travel from their starting locations over time. The

fractal dimension determines how thoroughly an area is searched. Both MSD and the

fractal dimension are governed by a single parameter µ. Changing µ allows control

over the extent and intensity of search, a property we exploit in order to adapt the

robot swarm to the distribution of targets.

5.8 Methods

5.8.1 iAnt Robot Platform

The iAnts implement a scalable and robust central place foraging algorithm (CPFA)

inspired by desert harvester ants (Hecker and Moses, 2015).

The iAnt simulator replicates the movement and sensing capabilities of iAnts,

small autonomous robots that sense and compute using onboard iPods (Figure 5.3a

on page 100). iAnts performing the CPFA have several phases, including a random

search phase implemented as an adaptive correlated random walk. Here we imple-

ment the Lévy walk as an alternative random search strategy. The parameters for

this search are determined by a genetic algorithm (GA) which evolves simulated

iAnts and produces a strategy for the physical robots to use in the search task.

Hecker et al. (2013) observed that iAnt robots fail to observe targets within their

viewing range 50% of the time. We incorporate this error in our simulations.
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5.8.2 Robot Lévy Search

Lévy walks are defined by the Hausdor↵ fractal dimension (H) of the random path

they generate. In order to analyse the relationship between Lévy walk e�ciency and

the distribution of targets, we have the iAnts generate a Lévy walk with parameter

µ ( Eq. (5.1) on page 85) and corresponding H ( Eq. (5.3) on page 92).

The GA explores the fitness landscape and optimises µ to produce a search pat-

tern with H that most e�ciently solves the problem of detecting a particular distri-

bution of targets.

iAnts draw a random variate, t, from a power law probability density function

(PDF) (with units 0.5 s):

t = t
min

(U(0, 1)) �1
µ�1 (5.5)

where t
min

is the minimum time (0.5 s) and µ is evolved by the GA to maximize the

discovery of targets. The GA is described in more detail in section 5.8.4 on page 98.

Each robot chooses a direction from a uniform distribution and moves in that

direction for t time steps. At the end of this movement a new t is drawn and the

process repeats. Collisions with the edge of the search area require that the robot

draw a new direction.

5.8.3 Cluster Analysis

We explore the optimised H evolved by the GA in response to various target config-

urations. To accomplish this we use 256 targets in every simulation but distribute
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them into varying numbers of clusters. For generality we measure the patchiness

(distance from uniform) of the distribution of targets using the Hopkins index.

Analysing search H across a varying number of clusters explores the space be-

tween a completely organized configuration in which all targets are in a single pile,

and a completely disordered configuration in which the targets are uniformly dis-

tributed into 256 piles of one target each. Cluster centres are positioned by drawing

x and y-coordinates from a uniform PDF.

We use two cluster progressions amongst which the targets are divided to map the

Hopkins index to di↵erent configurations of targets: A linear progression, 1, 10, 20,

..., 100, and a power law progression, 1, 2, 4, ..., 256, of clusters. This map allows the

exploration of the Hopkins index’s resolution in distinguishing target configurations.

Zhang et al. (2006) describe experiments comparing cluster analysis algorithms.

They report that the Hopkins index is the most sensitive test for distinguishing fine

scale clustering. They identify this fine scale analysis as particularly important in

biological systems.

The Hopkins statistic tests spatial randomness by comparing nearest-neighbour

distances from uniformly distributed points and randomly chosen targets (Jain and

Dubes, 1988). If there are n targets in the set T, then let m ⌧ n and choose m

sampling points sj = (xj, yj) 2 uniform distribution on the interval [a,b] (U(a, b)),
where x and y are coordinates in the arena. Also choose m targets p̃k = pik 2 U(a, b).
If we define U and W to be,

U =
mX

j=1

||sj � t||, 8t 2 T W =
mX

k=1

||p̃k � t||, 8t 2 T (5.6)
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Then the normalized Hopkins index is,

H =
U

U +W
(5.7)

Intuitively, the Hopkins index compares (as a normalized ratio) W, the distribution

of distances between targets (S and sj), and the distribution of distances between

targets and, U a set of uniformly distributed points (S and p̃k). Yielding a dimen-

sionless statistic that does not depend on the units used to measure distance. The

values of the Hopkins index lie in the interval [1
2

, 1]. For randomly generated points

the expected value is 1

2

. As targets become more highly clustered the value of the

Hopkins index approaches 1.

Use of the Hopkins index requires the use of multiple datasets, S, and that the

Hopkins index is computed for each S. We are able to generate multiple datasets

(N=10) for each configuration of targets. This meets the requirements for using the

Hopkins index and allows us to generate a 95% confidence interval around H.

For this work we choose m = 50 and we have n = 256 targets. To generate

the Hopkins index we repeat the analysis 100 times and take the mean value. Since

each configuration has 10 samples there are 1000 Hopkins index samples contributing

to each data point in Figure 5.4 on page 101. This allows us to confirm that the

empirical PDF is Gaussian distributed about the mean and suggests that variation

in the Hopkins index is due to random rather than systematic e↵ects. We examine

a total of 18 di↵erent distributions (10 linear and 8 power law progressions).

Using the Hopkins index has the advantage of being a generalized statistic that

measures clusteredness rather than being specific to our experimental design.
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5.8.4 Genetic Algorithm

The GA evaluates the fitness of various search strategies by simulating robots that

search for targets. We vary the number of robots from 1 to 32 and the Hopkins index

for target configurations from 1

2

to 1 and evolve an H that maximizes the search

e�ciency of the robotic swarm. Fitness is defined as the number of targets detected

by the robot swarm in one hour of simulated time. Because the fitness function is

evaluated many times, the simulation must run quickly. Thus, we use a parsimonious

simulation that uses a gridded, discrete world without explicitly modelling sensors

or collision detection. This simple fitness function also helps to mitigate condition-

specific idiosyncrasies and avoid over-fitted solutions (Hecker and Moses, 2015).

We evolve a population of 100 simulated robot swarms for 100 generations, though

convergence consistently occurred in fewer generations. We used the recombination

and mutation described in Hecker and Moses (2015). The GA evolves µ in order to

govern Eq. (5.5) on page 95 and therefore the resultingH. From Eq. (5.3) on page 92,

H+1 = µ. Parameter µ is randomly initialized using independent samples from

U(1, 10) for each swarm. Robots within a swarm use identical parameters throughout

the hour-long experiment. During each generation, all 100 swarms undergo 8 fitness

evaluations, each with di↵erent random placements drawn from the specified target

distribution.

At the end of each generation, the fitness of each swarm is evaluated as the sum

total of targets collected in the 8 runs of a generation. Deterministic tournament

selection with replacement (tournament size = 2) is used to select 99 candidate

swarm pairs. Each pair is recombined using uniform crossover and 10% Gaussian

mutation with fixed standard deviation (0.05) to produce a new swarm population.
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We use elitism to copy the swarm with the highest fitness, unaltered, to the new

population – the resulting 100 swarms make up the next generation. After only 10

to 20 generations the evolutionary process converges on a H for the Lévy search.

5.8.5 E↵ect of the Number of Searchers and the
Configuration of Targets on the Optimal Fractal
Dimension of Search

We use an analysis of variance (ANOVA) to determine whether the relationships

between factors (number of searchers and the Hopkins index) and the observed H
selected by the GA are statistically significant. The ANOVA also allows the quan-

tification of the relative contributions of factors to the resulting H.

The error factor measures the amount of variation in evolved H that results

from the combination of changes in the number of searchers and the number of

target clusters. SS is the sum of di↵erences used in calculating the the mean squared

error (MSE). MSE measures the variance within and between factor groups.
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(a)

(b)

Figure 5.3: The iAnt Robot System. Physical robots perform a search task informing
the error model in simulation. The resulting simulation reproduces the performance
of the physical robots (Hecker et al., 2013). (a) Robots searching for targets. The
targets are QR tags attached to poker chips. The lamp corresponds to the robot start
position. (b) Simulation of the physical iAnt robots in a 100m2 search arena. Grey
dots are QR tags which are the target of search. Circles are robot locations. Blue
circles indicate a robot that has just found a tag. Green circles are robots engaged
in search. The red robot is at the start position.
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5.9 Results

5.9.1 The Hopkins Statistic

We use the normalized Hopkins index as a measure of the clusteredness of target

distributions. In line with (Zhang et al., 2006) we find that the Hopkins index is able

to capture changes in target distribution over a wide range of target configurations

(Figure 5.4). However, the relationship between the number of clusters and the

Hopkins index is non-linear, and it becomes more di�cult to distinguish di↵erences

in target configurations as the number of clusters approaches 1. For example, the
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Figure 5.4: Hopkins index vs number of clusters. The Hopkins index is able to
distinguish between target configurations ranging from a single cluster to a uniform
distribution of 256 singleton clusters. Inset: Hopkins index for a linear progression
of between 1 and 80 clusters.
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di↵erence between 1 cluster and 40 clusters only maps to a 0.05 decrease in the

Hopkins statistic. Despite this we are able to distinguish all target configurations

that we considered from one another using the Hopkins index. We also find that the

progression of target configurations, from 256 clusters of 1 target each to 1 cluster

of 256 targets, maps to the full range of the Hopkins index.

5.9.2 The Genetic Algorithm

We use the genetic algorithm (GA) to explore the relationship between the number of

searchers, the Hopkins index of targets and the optimal Hausdor↵ fractal dimension

(H). The GA evolves values of H that provide a fitness advantage, where the fitness

is the e�ciency of target detection. We define e�ciency to be the number of targets

detected in one hour of search.

The Hausdor↵ fractal dimension (H) is used as a measure of the trade-o↵ between

extent and intensity selected by the GA. The Hopkins index provides a metric for

how disorganized the targets are.

The fitness landscape forH was explored over 100 generations for one combination

of factors, and visualized in Figure 5.5 on the next page. A linear regression was

performed and plotted on log-log transformed data (dashed line). The slope with 95%

confidence interval (CI) is �0.501±0.024 and intercept with 95% CI is 2.141±0.008.

(R2 = 0.948, p-value < 10�4).

The rapidity of GA convergence (10-25 generations), the convergence to disjointH
depending on the factors defining the search environment, and the power law fitness
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Figure 5.5: Convergence of the GA on an optimum in the fitness landscape defined by
H. Fitness is defined to be the number of targets detected in 1 h. This example run
has 6 searchers and 100 clusters. The mean fitness values for each of 100 generations
are shown as open circles. The fitness peak is reached after only 25 generations. The
increase in fitness as the population approaches the optimal fractal dimension (H)
is fit well by a power law (R2 = 0.948), indicated by the dashed line.

relationship as a function of H all suggest that the fitness landscape for optimizing

H is simple and therefore particularly amenable to evolutionary optimization.

The example fitness landscape revealed by the GA is based on 6 searchers and 100

clusters. The landscape has a clear slope from a randomly assigned starting value

of µ = 6.3 (100.8) to a peak at approximately 1.86 (100.27) (Figure 5.5). We note

that below Hopkins index 0.9 the GA is unable to discover values of H that provide

significant advantage over other values. The e�ciency of Lévy walks for distributions

with Hopkins index between 0.75 and 0.9 are statistically similar and converge to H
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Figure 5.6: Dependence of genetic algorithm (GA) selected values of fractal dimen-
sion (H) on target clusteredness. Bars indicate the 95% confidence interval (CI).

⇡ 0.71. For Hopkins index between 0.9 and 1, that is, highly clustered, H falls from

0.7 to ⇡ 0.38 (Figure 5.7 on the next page).

5.9.3 Optimizing Fractal Dimension for the Number of
Searchers and the Configuration of Targets

We used a full factorial experimental design to explore the relationship between H as

optimised by our GA, the number of searchers, and the configuration of targets. The

results are displayed in Figure 5.8 on page 106. For the target configuration closest to

the uniform distribution (with Hopkins index = 1

2

, 256 clusters), the optimal evolved
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Figure 5.7: Dependence of genetic algorithm (GA) selected values of fractal dimen-
sion (H) on the Hopkins index. Bars indicate the 95% confidence interval (CI).

µ = 1.8 (H = 0.8). This is in general agreement with Viswanathan et al. (1999) who

predict an optimal µ of 2 (H = 1) for the uniformly distributed target configuration.

A two-way ANOVA analysis (Hogg and Ledolter, 1987) shows a statistically sig-

nificant correlation between fractal dimensions of the Lévy walk evolved by the GA,

the number of searchers, and the Hopkins index. The p-values for the number of

searchers and the Hopkins index of target clustering are less than 10�5 and 10�18

respectively, indicating a statistically significant influence of the number of searchers

and the Hopkins index on optimal values of H.
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Figure 5.8: Full factorial heatmap. Colors indicate GA optimised values of H for
number of searchers and target configuration.

The statistical tests indicate only that the GA selects di↵erent optimal values of

H for di↵erent target configurations and di↵erent numbers of searchers. We measure

the resulting change in search e�ciency using simulations.

Factor SS df MSE F p-value
N Searchers 0.072 5 0.014 8.93 < 10�4

Hopkins 0.682 8 0.085 53.15 < 10�4

Error 0.064 40 0.002
Total 0.818 53

Table 5.1: ANOVA Results. The number of searchers and and the Hopkins index
both have statistically significant e↵ects on the GA optimised H. The error term is
the remaining variance in H not explained by the factors.
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We create a multiple comparison plot (Figure 5.9 on the next page) to further

explore the relationships between the number of searchers, and H. The majority of

samples of cluster sizes in (Figure 5.9a on the following page can be arranged into

significantly di↵erent groups. However, Figure 5.9b on the next page shows that

there are no statistical di↵erences between the number of robots for N > 1.

In order to investigate the magnitude of the e↵ect of H on search e�ciency, we

analyse four Lévy walks characterized by di↵erent H evolved for di↵erent numbers

of searchers and for target configurations with di↵erent Hopkins indices.

Figures 5.10 on page 109 and 5.11 on page 110 show the practical impact of the

number of target clusters and the number of robots on e�ciency. Each inter-quartile

box is the result of 1000 searches. We plot the e�ciency of a simple random walker

for comparison.

For Figure 5.10 on page 109 we evolve Lévy walks on di↵erent target configura-

tions, 1 target cluster and 256 target clusters, while holding the number of robots

fixed at 8. Lévy searchers perform much better when applied to the target configu-

ration for which they were evolved than when applied to a target configuration for

which they were not evolved. The change in median e�ciency is 19 and 26%, with

p-value < 10�4 for both the Student’s t-test and the Mann-Whitney U test.

In Figure 5.11 on page 110 we repeat the experiment but this time we hold the

target configuration constant and vary the number of robots. This time, despite the

statistically significant di↵erence reported by the ANOVA, the change in e�ciency

is negligible. This suggests that the fitness landscape defined by the interaction of

the number of searchers and H is relatively flat.
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Figure 5.9: Multiple comparison plots (Montgomery, 2012) showing the statistical
separation of meanH grouped by the number of searchers and the number of clusters.
Open circles are sample means and the bars indicate the Tukey range test at 95%
confidence (Tukey, 1949). Non-overlapping bars indicate populations with means
that are significantly di↵erent. In (a) most genetic algorithm (GA) optimised values
for the fractal dimesion (H) are statistically di↵erent from those evolved for a di↵erent
target configuration. In (b) only H evolved for N = 1 is statistically di↵erent from
H evolved for multiple robots.
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Figure 5.10: E�ciency comparison for search patterns evolved at the extremes of
the Hopkins index. The search pattern with H = 0.7 was evolved for a target
configurations with Hopkins index = 1

2

(uniformly distributed targets). The search
pattern with H = 0.3 was evolved for Hopkins index = 0.9996 (1 target cluster).
A simple random search (H = 2) is given for comparison. The e�ciency gain for
optimised values of H are significant (19 and 26%). As expected the di↵erence in
e�ciency between a simple random walk and either Lévy search is significant (45
and 81%). (a) 8 Robots and Hopkins index = 0.9996 (1 cluster). (b) 8 Robots and
Hopkins index =1

2

(256 clusters).

109



www.manaraa.com
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Figure 5.11: E�ciency comparison for search patterns evolved at the extremes of
swarm size. The search pattern with H = 0.6 was evolved for a swarm with 32
robots. The search pattern with H = 0.45 was evolved for a swarm with 1 robots.
A simple random search (H = 2) is given for comparison. The e�ciency gain for
optimised values of H are minimal. As expected the di↵erence in e�ciency between a
simple random walk and either Lévy search is significant (40 and 59%). (a) 1 Robot
and Hopkins index 0.98 (16 target clusters). (b) 32 Robots and Hopkins index 0.98
(16 target clusters). The percentage change between the search pattern evolved for
1 and 32 robots are negligable (0.0% and 0.01%).
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Our results show that the configuration of targets as measured by the Hopkins

index of clusteredness influences the H of optimal Lévy search. The optimal H does

not depend significantly on the number of searchers (N) for N > 1.

5.9.4 E�ciency Scaling with Number of Robots

When target discovery is di�cult, for example when there is only a single cluster

of targets (Hopkins index ⇡ 1), the evolved H is approximately 0.4. In this case
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Figure 5.12: Search e�ciency scales linearly with the number of robots. Closed
circles are mean values and bars are the 95% confidence interval for 100 samples.
Targets are clustered with Hopkins index ⇡ 1.0 (1 cluster). The dashed line is the
linear regression (R2 = 0.924, p-value < 5⇥ 10�3). Inset: search e�ciency saturates
when targets have Hopkins index ⇡ 0.93 (64 clusters). Closed circles are mean values
and bars are the 95% confidence interval for 100 samples. The dashed line is a linear
interpolation.
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the relationship between the number of searchers and search e�ciency is linear (Fig-

ure 5.12 on the preceding page). Doubling the number of robots doubles the number

of detected targets. This is in contrast with prior studies, where per robot search

e�ciency declines with number of searchers (Winfield et al., 2005; Hecker and Moses,

2015).

However, we note that the linear scaling does not hold in all cases: when the

number of target clusters is large, adding more searchers does not result in a pro-

portional increase in e�ciency, because as targets become rare, they become more

di�cult to find. We term this searcher saturation. The saturation e↵ect is seen in

the Figure 5.12 on the previous page inset, where we see saturation after more than

half the targets are collected. This e↵ect is discussed in Hecker et al. (2015).

5.10 Discussion

In the absence of accurate localization, randomized search provides a useful alterna-

tive strategy to deterministic search. Harris et al. (2012) found that T cells searching

in peripheral tissue can be modelled using a Lévy walk. In previous work we observed

the stochastic search patterns of T cells searching for dendritic cells (DCs) in lymph

nodes (LNs) and characterized them as being reasonably approximated by a Lévy

flight (Fricke et al., 2013). Here we explore the ability to optimise the e�ciency of

Lévy search in a robot swarm.

A significant advantage of Lévy search is its simplicity and adaptability: a range

of search behaviours can be defined using just one parameter. Evolving solutions is

fast since the fitness landscape is simple with a well defined optima (Figure 5.5 on

page 103).
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We show that the Hausdor↵ fractal dimension (H) of the Lévy walk can easily be

adapted to the configuration of targets (Figure 5.10 on page 109), and that the op-

timal Lévy walk is insensitive to the number of searchers (Figure 5.11 on page 110).

Specifically the H selected by the genetic algorithm (GA) decreases as the clustered-

ness and the Hopkins index of the targets increase. This supports a prediction made

by (Raposo et al., 2011) based on their theoretical analysis of the one dimensional

case. The insensitivity of Lévy search e�ciency to the number of searchers is a clear

benefit to swarm robotics. As robots fail or get lost the optimal H for a given target

configuration does not change.

The e↵ect of the number of searchers on individual e�ciency is extremely small

for the cases we tested (Figure 5.11 on page 110). We also find a linear relationship

between the number of searchers and the e�ciency of search, up until so many targets

have been found that search itself becomes more di�cult (Figure 5.12 on page 111).

A possible explanation for the linear scale-up in e�ciency with the number of Lévy

searchers, as opposed to simple random searchers, is that when Brownian searchers

start searching from the same location the high fractal dimension of their movement

results in locations being revisited by other robots in the swarm. For n searchers the

number of unique locations visited is proportional to t ln n
ln t

. Only after t exceeds

en do searchers employing a simple random walk avoid search redundancy (Larralde

et al., 1992). For a swarm of 256 robots performing a simple random search this

implies wasted e↵ort for more than 10100 time steps.

In contrast, for n searchers employing the evolved Lévy search pattern, the num-

ber of unique locations visited is proportional to nt, implying relatively little search

redundancy (Viswanathan et al., 1996). Therefore, given a search pattern with H
tuned to a particular configuration of targets, adding searchers increases search ef-
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Chapter 5. Adaptation of Lévy Exponents to Target Configuration

ficiency linearly. There is little interaction between the number of searchers and

the configuration of targets which could have potentially complicated the proper

selection of H.

Our analysis shows that there is a systematic relationship between H optimised

by a GA, the number of searchers, and the configuration of targets as measured by

the Hopkins index. Using this empirical relationship (Figure 5.8 on page 106) we are

able to predict values of H that result in improved search performance given various

target configurations (Figure 5.10 on page 109).

Lévy walks have been used as a model of biological search including immunological

search. The properties of Lévy search we explore in this paper have implications for

the biological systems in which Lévy flight models have been suggested. For example,

in the immune system di↵erent numbers of T cells are required to find a wide variety

of targets distributed in di↵erent ways in di↵erent tissues. The distribution of DC

targets in lymph nodes may be very di↵erent than virus-infected cells in the lung or

brain, and in each case the number and distribution of targets may change over time.

Because targets of immunological search are heterogeneously distributed, and the

number of searchers range by many orders of magnitude during the search process,

the flexibility and scalability of Lévy walks may be particularly useful in immune

search. The Lévy model provides an example of how a simple movement pattern

could be adapted by natural selection to search e�ciently given a variety of target

distributions over a wide range of T cell numbers.

Search for clustered targets is an important problem in swarm robotics because

it generalizes to many real-world applications, such as collecting hazardous materi-

als, natural resources, search and rescue, and environmental monitoring (Liu et al.,

2007; Parker, 2009; Winfield, 2009; Brambilla et al., 2013). A particularly exciting
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application is space exploration. For example, NASA recently announced the Swar-

mathon challenge in which robots operate in concert to autonomously search for,

retrieve, and map patchy natural resources, such as water ice. These robots swarms

are intended to be used for resource exploration on other planets (Ramsey, 2015).

In this arena particularly, robot searchers must be robust to hardware failure and

sensor limitations, and adaptable to heterogeneous target distributions. Scalability is

desirable because it allows flexibility in robot allocation. For example, rich resource

areas may be assigned more robots without loss of e�ciency. Our work demonstrates

a mechanism for tuning the fractal dimension of a search pattern to most e�ciently

encounter targets given a measure of their clusteredness, while also being scalable

and robust.
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A Deterministic Swarm Search
Algorithm

Capt. Kirk: “I was not aware, Mr. Baris, that 12 Klingons constitutes

a swarm.”

— The Trouble with Tribbles
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6.2 Publication Notes

This chapter is in press. ©2016, IEEE, reprinted with permission from the authors.

Fricke, G. M., Hecker, J. P., Griego, A. D., Tran, L., T., & Moses, M. E. (2016). “A

Distributed Deterministic Spiral Search Algorithm for Swarms.” In Proceedings of

the 29th IEEE/RSJ 2016 International Conference on Intelligent Robots and Systems

(IROS). The paper is reproduced here in accordance with IEEE guidelines on reuse

in thesis and dissertations (Appendix C).

6.3 Abstract

As robot swarms become more viable, e�cient solutions to fundamental tasks such as

swarm search and collection are required. We propose the distributed deterministic

spiral algorithm (distributed deterministic spiral algorithm (DDSA)) which gener-

alises a spiral search pattern to robot swarms. While being an e↵ective search strat-

egy in its own right, the DDSA is also a useful point of comparison for other swarm

search strategies. Such a benchmark for robot swarm search is currently needed but

missing. As a case study, we compare the DDSA to a biologically-inspired central-

place foraging algorithm that uses stochastic search, memory, and communication to

e�ciently collect resources in a variety of di↵erent resource distributions.

6.4 Introduction

Many swarm robot applications require the detection and collection of targets by

teams of robots. These tasks include planetary surveys (Fink et al., 2005), land and

sea mine clearance (Weber, 1995), pollution mapping by subsurface robots (Hu et al.,

118



www.manaraa.com

Chapter 6. A Deterministic Swarm Search Algorithm

2011), environmental monitoring, survivor location in hazardous environments (Birk

and Carpin, 2006; Goodrich et al., 2008), military applications (Love et al., 2015),

and agricultural pest control (Tamura and Naruse, 2014). When the requirement

that targets be transported to a single collection point is included in a swarm search

problem, it becomes a central place foraging task (Winfield, 2009). Central place

foraging tasks include crop harvesting (Bac et al., 2014) and planetary resource

collection (Ramsey, 2015).

Spiral search patterns for single searchers with stationary targets have been stud-

ied extensively and found to have desirable optimality properties (Goodrich et al.,

2008; Bentley et al., 1980; Baeza-Yates et al., 1993; Burlington and Dudek, 1999;

Langetepe, 2010; ElHadidy, 2015; Gabal and El-Hadidy, 2015). These properties

include detection of the nearest targets first, complete coverage of the area within

the spiral, and minimal oversampling. Detection of the nearest targets first is partic-

ularly important for central place foraging because it minimises the per-target trip

time to the collection point.

Here we present the distributed deterministic spiral algorithm (DDSA). The

DDSA generalises a single robot square spiral to any number of robots. The gener-

ated spirals are interlocking paths that preserve the determinism of the single robot

case and the consequent optimality guarantees. We implement the DDSA using the

ARGoS swarm simulator (Pinciroli et al., 2012) in order to observe how foraging

e�ciency scales with the number of searchers and targets. The physical robots we

simulate are called iAnts (Hecker et al., 2013). Groups of iAnts are designed to

meet the fundamental properties of a swarm described by Brambilia et al (Brambilla

et al., 2013). We compare our results to the central place foraging algorithm (CPFA)

developed by Hecker and Moses (Hecker and Moses, 2015; Hecker et al., 2015).
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In both swarm robotics (Keeter et al., 2012) and ecology (Reynolds et al., 2007;

Papi, 2012) the performance of systematic search strategies, including spiral search, is

assumed to degrade significantly in the presence of error. Stochastic methods which

are more resilient to noise are therefore favored (Sebbane, 2011). We investigate the

impact of positional error on the performance of the DDSA and compare our results

to the CPFA.

Central place foraging algorithms do not have a baseline of comparison. This

makes it di�cult to evaluate the e↵ectiveness of foraging algorithms. Swarm al-

gorithms tend to be probabilistic and contingent on the hardware or simulation in

which they are implemented. This makes improvements in performance di�cult to

compare across systems and hard to describe analytically. We propose the use of

the DDSA as a point of comparison for other central place foraging algorithms. The

DDSA has two essential properties that make it a good candidate as a baseline al-

gorithm: 1) it is simple from a theoretical point of view, being deterministic and

having behaviour definable using a simple recurrence relation, and 2) in the error

free case, it guarantees collection of the nearest targets first, complete coverage, and

minimal repeated sampling.

6.5 Related Work

In addition to the single searcher work listed in the introduction, Ryan and Hedrick

describe a square search pattern carried out with a single helicopter (Ryan and

Hedrick, 2005). This search pattern is defined in Appendix H of the Coast Guard

Operating Manual and is similar to the DDSA single searcher base case.
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Baeza-Yates and Schott describe a multi-agent spiral search algorithm in which

agents begin at a central point (Baeza-Yates and Schott, 1995). However, because

they use a circular spiral the searchers diverge from one another over time. As a

result, the approach is only able to reliably detect lines rather than point targets

placed at arbitrary locations in the plane.

Parallel spiral search approaches have also been implemented in which each

searcher performs an independent single agent spiral spatially removed from the

other members of the swarm (Hayes et al., 2001; Feinerman et al., 2012), a be-

haviour observed in ants in our own lab.2 Stocastic spiral search patterns have also

been observed as a central place foraging strategy of desert ants (Cataglyphis fortis)

(Müller and Wehner, 1994). These ants inhabit salt pans, which are flat and obstacle

free compared to most natural landscapes.

The Multiple Robots Internal Spiral Coverage algorithm is a solution that guar-

antees complete coverage of a environment by partitioning the space equally among

multiple robots (Hao et al., 2008). This approach di↵ers from the DDSA because

the robot search paths are discretized by a grid structure and robots are assigned to

regions within the grid.

In work closely related to our own, Skubch describes a “proof of concept”’ ap-

proach for generating a circular distributed spiral for multiple robots Skubch (2012).

A dynamic constraint optimisation function uses stateful-feedback and a shared

datastructure to coordinate the movement of robots in the swarm. Intriguingly,

this dynamic constraint update at each time step allows the redistribution of robots

in the event of robot failure, but also results in robots randomly switching between

2Spiralling Ant Video: youtu.be/N46u0xLl56o
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each other’s spiral paths. In our own approach the search pattern is predetermined

and robots do not communicate with one another during search or maintain a shared

datastructure.

López and Maftuleac describe a deterministic search strategy for idealized searchers

that in the case of 2 and 4 searchers results in an interlocking spiral (López-Ortiz

and Maftuleac, 2016). When the number of searchers exceeds 4, the algorithm par-

titions the space into expanding wedges. This strategy requires searchers to perform

a right angle turn every step. They find this approach to be robust to error in target

detection and searchers with di↵ering speeds.

The CPFA with which we compare the DDSA is an ant-inspired algorithm (Hecker

and Moses, 2015; Hecker et al., 2015). As robots search the environment they prob-

abilistically place waypoints at locations with high target density. These waypoints

influence other members of the swarm towards searching areas where more targets

are expected to be found. When not using waypoints robots perform a random

walk with decaying correlation. This strategy ensures that areas near where a target

was previously found are searched intensively but that if nothing is found the robot

quickly moves to a new area. The parameters that govern the CFPA, such as the

probability of placing waypoints as a function of local target density, are optimised

with a genetic algorithm.
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6.6 Methods

6.6.1 The Algorithm

The DDSA specifies the interlocking spirals for a group of robots by calculating how

far each robot must travel along each edge of their particular spiral (Figure 6.1 on

the next page). Calculating the spiral paths requires knowing 1) how many robots

there are so enough room is left for all of them, 2) the target detection range of the

robots so the gap between spirals is eliminated, 3) how far into the spiral the robot

is, since the spiral expands over time, and 4) the index of each robot in a predefined

order.

Let DH be a function that determines how far the current robot should travel in

a given cardinal direction, H, for a particular circuit count, c. The circuit count is

the number of times a robot has completed movement in all four directions in N, E,

S, W order. Robots move away from the central location and order themselves on

the 0th circuit. Formally, DH(i, c, R) : I ⇥ N0 ⇥ N0 where I = {i | 1  i  R} is

the index of the current robot, c is the current circuit, and R is the total number of

robots. The north (N) and east (E), and south (S) and west (W) movement cases

are symmetric, so D
N

= D
E

and D
S

= D
W

.

D
N

(i, c, R) =

8
>>>>>><

>>>>>>:

i c = 0

D
N

(i, 0, R) +R + i c = 1

D
N

(i, c� 1, R) + 2R c > 1

(6.1a)

123



www.manaraa.com

Chapter 6. A Deterministic Swarm Search Algorithm

Figure 6.1: The DDSA running in ARGoS, overhead view. The robots search a
continuous plane employing a spiral search pattern beginning at a central collection
point. Targets are shown as black dots arranged in a partially clustered distribu-
tion. Robots are marked with a blue or green dot. Robots with a green dot are
carrying targets, those with a blue dot are searching. Coloured lines are the paths
of the various robots. Paths taken to and from the central collection point are not
displayed. The simulation is performed in continuous space and robot paths and
target placements are not lattice bound.
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D
S

(i, c, R) =

8
>><

>>:

D
N

(i, c, R) + i c = 0

D
N

(i, c, R) +R c > 0

(6.1b)

Requiring each robot to know the swarm size and its index implies global knowl-

edge which would theoretically violate a principle of swarm design. Fortunately there

are a number of consensus addressing algorithms for multi-robot systems that allow

the swarm to determine its size and introduce an ordering (Thoppian and Prakash,

2006).

The gap between adjacent search paths, g, must be narrow enough so that the

target detection ranges of robots on adjacent paths overlap to guarantee complete

coverage; however, overlap should be minimized to avoid resampling of the same

location. The target detection range, r, is 13 cm in our robots, suggesting a gap

of 26 cm. However, at the corners of the square spirals the distance between paths

increases to
p
2g2. Therefore, in order to guarantee complete collection within the

spiral, we set g =
p
(2r)2/2 ⇡ 18 cm to compensate.

Let S be the set of searcher positions, along with DH and g we can define inter-

locking square spirals for each robot and the state machine given in Algorithm 1 on

the following page.
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Algorithm 1 DDSA

1: for all robots i 1 to R do
2: for c 0 to NCircuits do
3: Q.enqueue(h0, gDN(i, c, R)i)
4: Q.enqueue(hgDE(i, c, R), 0i)
5: Q.enqueue(h0,�gDS(i, c, R)i)
6: Q.enqueue(h�gDW (i, c, R), 0i)
7: end for
8: while ¬Q.empty() do
9: w  s+Q.dequeue()

10: Move toward w
11: if target found at current location s then
12: Return to collection point with target
13: if at collection point then
14: Deposit target
15: Return to location s
16: end if
17: end if
18: end while
19: end for

6.6.2 Robot Simulation

We implement the DDSA and central place foraging algorithm (CPFA) using the

ARGoS swarm robot simulator (Pinciroli et al., 2012).3 ARGoS supports high fidelity

ODE physics engines which allow the accurate detection of robot collisions. We use

the 2D physics solver provided with ARGoS running at 320 updates per second for

our simulations.

The parameters for the robots are informed by those of the physical iAnt robots

designed and built in our lab (Hecker and Moses, 2015). Basing the simulated robots

on physical robots allows us to choose positional error that closely matches our

3The software used in this work is available on GitHub:
github.com/BCLab-UNM/DDSA-ARGoS/release/0.2-beta

github.com/BCLab-UNM/CPFA-ARGoS/release/0.1-beta
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experience with real hardware. In order to represent iAnt hardware, the simulated

robots are 8 cm in radius and have a downward facing camera capable of seeing

directly below the robot. Targets have a radius of 5 cm, together with the 8 cm robot

viewing area this gives a value of 13 cm for parameter r in the DDSA. Robots have a

forward movement rate of 16 cm s�1 and a rotation rate of 8 cm s�1 or approximately

1 rad s�1. Robots move 8 cm towards their goal locations between reorientations.

We simulate error by applying Gaussian noise to robot destinations. To replicate

our observations that the iAnt robots accumulate error linearly with distance (Hecker

et al., 2013), we make the standard deviation increase with the distance from the

robot’s current position to its destination position, x. We multiply the standard

deviation by a noise coe�cient, e, in order to change noise severity. Therefore, our

noise variates, v, are generated by:

v ⇠ N (0, �2) where � = d(s, x)⇥ e (6.2)

We do not apply positional noise to robots returning to the central location point

for the DDSA or CPFA. We assume that the collection point is marked by a beacon

following our previous studies with iAnt hardware (Hecker and Moses, 2015).

6.6.3 Experimental Setup

The problem domain for central place foraging algorithms is target placements within

a plane. Each problem instance consists of a set of coordinates representing the

locations of targets. To be useful a search algorithm must work e↵ectively across a

wide variety of potential target configurations. We measure the performance of the
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Figure 6.2: The CPFA running in ARGoS, overhead view. The partially clustered
distribution of targets is shown as black dots, robots green or blue dots, lines indicate
the paths taken by searchers during the experiment. Red dots indicate waypoints
used by searchers to communicate the location of dense target clusters to the swarm.

DDSA and CPFA by measuring target collection times over many randomly chosen

problem instances. While the DDSA is a deterministic algorithm, its performance

on any particular problem instance varies according to the particular placement of

targets. Collisions between robots can also introduce non-deterministic e↵ects into

the search process.
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In our experiments, we place 256 targets in a 100m2 arena according to three ran-

dom distributions 1) uniform, 2) partially clustered, and 3) clustered. The uniform

distribution places targets at all locations in the search arena with equal probability.

The partially clustered distribution follows a power law with 1 cluster of 16, 4 clus-

ters of size 64, 16 of size 4, and 64 single targets. The clustered distribution consists

of 4 target clusters with 64 targets per cluster. If a cluster or target location is oc-

cupied a new uniform random location is chosen. We choose the partially clustered

distribution of targets as our default target distribution because naturally occurring

targets tend to occur in a variety of cluster sizes (Dunning et al., 1992).

All experiments last 30min, except experiments measuring complete collection

time, which run indefinitely. In all figures 25 experimental runs contribute to each

data point, except in Figure 6.3 on the next page where we use 50 replicates.

6.7 Results

6.7.1 Performance

Our experiments show that the DDSA performs at least as well as the CPFA in the 6

robot, no error case (Figure 6.3 on the following page). This confirms our expectation

that the DDSA has desirable search and collection properties. Beyond those already

discussed (closest targets first, complete collection and minimal oversampling), the

DDSA always returns to the location at which it last found a target. This is so that

the search spiral can be rejoined at the point it was interrupted, but it has the useful

side e↵ect of sending robots back to clusters of targets. The process of returning to

the location of the last-found target is called site fidelity, and is a common search
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Figure 6.3: Comparison of DDSA and CPFA performance for 3 target distributions.
Experiments are 30min in a 100m2 search arena with 6 robots and without noise.

strategy in ants (Beverly et al., 2009; Flanagan et al., 2012). This strategy is also

used by the CPFA.

The DDSA partitions the search space among searchers equally after the 0th

circuit. This is reflected in the order of performance we observed in Figure 6.3.

The uniform target distribution results in an equal allocation of robots to the target

collection task, partially clustered less so, and the clustered case least of all. The

unequal allocation of robots to targets results in a decrease in performance. Addi-

tionally, when a cluster of targets is encountered collisions between robots increase

near the cluster.

Similarly, in the CPFA experiments uniform targets are collected fastest, followed

by partially clustered targets, and clustered targets are collected slowest. This pat-

tern is reversed from Hecker and Moses (Hecker and Moses, 2015), likely because

that prior work did not consider collisions. Once a cluster is detected the CPFA
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can take advantage of it by recruiting robots to that location, but the initial time to

discover a cluster, and the increase in collisions at clusters, o↵sets this advantage.

6.7.2 Robustness

Degradation of the search pattern under positional noise results in only modest

decreases in performance. The number of collected targets is reduced by only 15%

between the error free case and our maximum error case (Figure 6.5 on page 133).

In the maximum error case the positional noise is substantial. For example,

a robot travelling 10 cm has destination positional error with standard deviation

30 cm (Figure 6.4b on the next page). This robustness to error is due to robots

progressively searching locations close to the collection point even with positional

noise. Additionally, positional error in one robot may be compensated for by noise

in adjacent robots. When the swarm is large, tags that are missed by one robot

that is out of alignment with its spiral are likely to be picked up by robots noisily

following adjacent paths (Figure 6.4a on the following page).

The CPFA is also robust to error. Compared to the CPFA without positional

noise shown in Figure 6.2 on page 128, search paths with e = 0.4 are qualitatively

unchanged in Figure 6.4c on the following page. In the maximum error case, e = 3.0,

shown in Figure 6.4d on the next page an increase in path tortuosity is apparent.

Noise in the CPFA does not systematically decrease performance (Figure 6.5 on

page 133).
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(a) Noise coe�cient: e = 0.4 (b) Noise coe�cient: e = 3.0

(c) Noise coe�cient: e = 0.4 (d) Noise coe�cient: e = 3.0

Figure 6.4: E↵ect of positional noise on the DDSA and CPFA search patterns. The
DDSA is shown in panels (a) and (b) and the CPFA in panels (c) and (d). Black
dots are targets, green and blue dots indicate the current location of robots and lines
are the paths taken by robots.

6.7.3 Complete Collection

The DDSA guarantees complete collection of targets within the search spiral in the

noise free case and as a result performs complete collection tasks faster than the
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Figure 6.5: In green, DDSA performance scaling with increasing error. Experiment
time is 30min. Dashed line is an exponential decay fit with R2 = 0.926. In blue,
CPFA performance scaling with increasing error. The best linear fit has R2 = 0.004
indicating that the noise coe�cient, e, explains very little of the variance in per-
formance. Circles are means and bars are the 95% confidence intervals. We use a
partially clustered distribution of targets in a 100m2 arena.

CPFA (mean decrease in collection time is 59.2%). In the CPFA the time to find

uniform targets increases exponentially as the number of remaining targets decreases

(Hecker et al., 2015). However, the time to complete collection scales linearly with the

number of targets. For each additional target the time for DDSA collection increases

by 10.67 s compared to 23.4 s per additional target with the CPFA (Figure 6.6 on

the next page).

The 95% confidence interval is tight relative to the stochastic CPFA, as expected

for a deterministic algorithm.
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Figure 6.6: In green, with dashed fit line, time for the DDSA to collect all targets
vs. number of targets. The dashed line is the linear fit with slope 10.67 seconds
per target, R2 = 0.998. In blue, with dotted fit line, time for the CPFA to collect
all targets vs. number of targets. Dotted line is a linear fit, slope 23.4 seconds per
target, R2 = 0.968. The circles are means and bars are the 95% confidence intervals.
We use a uniform distribution of targets in a 100m2 arena with 6 robots.

6.7.4 Scaling with the Number of Robots

The DDSA outperforms the CPFA for swarms consisting of between 1 and 15

robots. For swarms with between 20 and 30 robots DDSA performance drops below

that of the CPFA (Figure 6.7 on the following page). The DDSA performance curve

follows a parabola reaching its maximum between 15 and 20 searchers. Degradation

of performance is due to crowding at the collection point (Figure 6.8 on page 136).

That crowding at the collection point is the main driver for degradation in perfor-

mance is supported by our observation of linear scaleup when robots are not required

to return to the collection point (data not shown) and in previous work (Fricke et al.,

2016c).
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Figure 6.7: In green, with dashed fit line, DDSA performance scaling with the number
of searchers. The dashed line is a parabolic fit with R2 = 0.998. In blue, with dotted
fit line, CPFA performance scaling. The dotted line is a negative exponential fit with
slope with R2 = 0.922. Circles are means and bars are the 95% confidence intervals.
We use the partially clustered distribution of targets in a 100m2 arena with a 30min
time limit.

In the CPFA we observe a negative exponential increase in performance (Fig-

ure 6.7). It is possible that the CPFA is also following a parabolic curve with an

inflection point at a much higher number of robots than in the DDSA. Lower levels

of congestion at the collection point are likely due to the stochastic nature of the

CPFA which reduces the likelihood of robots contending for the same location at the

same point in time.
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Figure 6.8: Crowding in the DDSA degrades performance. State after 30min with
30 robots.

6.7.5 Worst Case Performance

Since the DDSA always collects items close to the collection point first an adversary

that placed all targets at the edge of the search arena would force the DDSA to

maximise its search and collection time. For our examples with a 100m2 arena,

6 searchers, 256 targets, a gap of 18 cm and a robot moving at 16 cm s�1 it takes

approximately 4 h to collect all the targets, compared to the observed mean time
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of approximately 1 h. Since the DDSA is a preplanned deterministic algorithm, an

adversary could force the DDSA to maximise its collection time by placing all targets

along the spiral path of a single searcher. The CPFA, in contrast, is a stochastic

algorithm that adapts to the distribution of targets. As such, design of a worst case

scenario for the CPFA is much more di�cult.

6.7.6 Comparison to a Perfect Algorithm

We can calculate the performance of a hypothetical perfect algorithm in which the

location of all targets are known to the swarm a priori. The expected distance from

the collection point p = (0, 0), to a uniformly distributed target, within the 100m2

square arena is, without loss of generality, the expected distance to a target, t =

(x, y), in the arena’s positive quadrant. Numerically solving the double integral over

the probability of each Euclidean distance, 1

5

2

R
5

0

R
5

0

d(p, t)dxdy, gives an expected

distance of 3.826m to each target. For 250 targets the perfect algorithm, neglecting

collisions, will collect all targets using a single robot in expected time E [C
time

] =

250⇥2⇥3.826m

0.16m s

�1

+ 250
�
⇡ + ⇡

2

�
s = 13 241 s, where the first term is the linear travel time

and the second is the turning time. Therefore, in the 6 robot case complete collection

will take an expected 2207 s. The mean time taken by the DDSA to collect 250 targets

with 6 robots is 3447, 95% CI [3399, 3493] s, an increase of approximately 56.2%

over the theoretical minimum.

The mean distance from the centre of a square of width 10 to its perimeter is

5.74 (Johnson, 1907). Substituting this value for 3.826 in the expected time formula

above yields 19 116 s in the single robot case. So for 6 robots we have a collection

137



www.manaraa.com

Chapter 6. A Deterministic Swarm Search Algorithm

time of approximately 53min. This gives a worst case increase in DDSA collection

time over the perfect algorithm of 353%.

6.8 Conclusions

We show that desirable properties of the single agent square spiral, extensively

demonstrated in previous work, can be extended to multiple robots. The DDSA

has optimality properties which make it ideal for use as a central place foraging

benchmark: guaranteed collection of nearest objects first, complete collection, and

minimal oversampling. Benchmark algorithms should provide an e�cient and theo-

retically tractable point of comparison for more complex algorithms. By comparing

the CPFA to the DDSA we have a better understanding of the CPFA’s strengths

and weaknesses.

Adaptive search patterns such as the CPFA take advantage of information about

target clusters. Doing so increases target detection rates but does not minimise

trip time. This is highlighted by the relatively good performance of the DDSA

(Figure 6.3 on page 130). This suggests that a modification to the CPFA, the use

of distance information when deciding whether a robot should use a waypoint, could

be beneficial.

While the DDSA is surprisingly resilient to error the CPFA is even less a↵ected

(Figures 6.4c on page 132 and 6.5 on page 133). This suggests that the DDSA can

be an e↵ective strategy even for robots with limited ability to localise.

The DDSA solves the complete collection problem optimally, in that there is no

redundancy in the search pattern and it guarantees collection of all targets within the

spiral. In the 6 robot case, the DDSA mean complete collection time is only 56.2%
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greater than the theoretical perfect algorithm, which has perfect prior knowledge of

all target locations and no collisions. In comparison the CPFA’s stochastic strategy

takes much longer to collect all targets; using the DDSA as a benchmark provides a

point of comparison that allows us to quantify this di↵erence (Figure 6.6 on page 134).

Two factors make finding scalable solutions to central place foraging di�cult.

Congestion at the central collection point and the mean distance to the targets both

grow with the rate of target collection, which in turn grows with the number of

robots. However, the stochastic nature of the CPFA means that it does not su↵er as

much as the DDSA from the central-point collision bottleneck. This results in the

CPFA outperforming the DDSA when the swarm size exceeds 20 robots (Figure 6.7

on page 135). The congestion in the beginning setup phase of the DDSA (Figure 6.8

on page 136) could be mitigated by staggering a time delay when robots begin the

spiral, or by moving directly to their positions in circuit 0 without travelling to the

centre of the map first. Generalisation to multiple collection points allows for more

scalable solutions such as the multiple-place foraging algorithm (MPFA) (Lu et al.,

2016).

The DDSA provides both theoretical and practical advantages as a general search

algorithm, central place foraging strategy, and a benchmark. We expect this ap-

proach will find applications in a wide variety of robot swarm tasks.
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6.9 Software

The software used in this chapter is available at:

github.com/BCLab-UNM/DDSA-ARGoS/release/0.2-beta

github.com/BCLab-UNM/CPFA-ARGoS/release/0.1-beta
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Adaptation of Lévy Exponents to
Error and Collisions

It is time to study and manage incorrectness in the interest of robust-

ness. We should not shun the trade-o↵, but rather, we should understand,

engineer, and teach computation beyond correctness and e�ciency only.

-David Ackley (Ackley, 2013)

7.1 Author Contribution Statement

I am the sole author of this chapter under the supervision of Melanie Moses (Associate

Professor, UNM Computer Science, Biology, and Santa Fe Institute).

7.2 Introduction

As shown in Chapter 5, the exponent of the power law that characterises the Haus-

dor↵ fractal dimension (H) of a Lévy search can be profitably adapted to the config-
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uration of targets. We found that the number of searchers only weakly influenced the

optimal Lévy exponent. However, we did not model the role of searcher collisions.

In this chapter, we investigate the relationship between the Lévy exponent, swarm

size in the presence of collisions, target detection error, and localisation error. To

examine these relationships, we require robot simulator that can model collisions.

The ARGoS simulator (Pinciroli et al., 2012) coupled with a 2D physics engine

(dyn2d) provides the ability to model collisions for swarms of robots while also

running very quickly in comparison to other robot simulators. ARGoS is also able

to model robots in continuous space rather than as a grid (as in Chapter 5) which

allows more accurate modelling of localisation error. We reuse the localisation error

models developed for testing the distributed deterministic spiral algorithm (DDSA)

in Chapter 6 and implement sensor error simulation to investigate the impact of error

on the optimal Lévy exponent. We also move the simulation boundaries beyond the

region in which targets are placed. This this prevents searchers from staying in

the target area by simply bouncing o↵ the simulation boundaries. In Chapter 5 we

evaluated a free search task in which targets are consumed as they are encountered.

In this Chapter, we apply adaptable Lévy search algorithm (ALSA) to the central

place foraging (CPF) task.

Ultimately ALSA is intended to adapt the H of its search pattern in response to

environmental factors. Currently ALSA is able to estimate the target configuration

and choose an appropriate search H according to our findings in Chapter 5. Robots

running ALSA individually calculate the Hopkins index of the target distribution,

updating the index as each new target is encountered, However, as we show in this

chapter the relationship between H and the target configuration is dominated by the

target detection error rate and swarm size. Incorporating detection of these para-
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meters is under development. Swarm size can be determined directly, or dynamically

by measuring the robot-to-robot collision rate.

In this chapter we define target detection error rate to be the false negative rate,

we do not consider false positives.

7.3 Significance

Our work so far on swarm search patterns (Fricke et al. (2013) and Chapters 3 and

5) shows that selecting a random search strategy with the appropriate balance of

intensity and extent is critical to maximising the e�ciency of stochastic search. Here

we examine the role of error in choosing the Lévy exponent that maximises search

e�ciency. Engineering swarms in real hardware is dominated by the need to control

for sensor error. Sensor error impacts search patterns in two ways: First, sensor error

interferes with the ability of a robot to know its current location and navigate to

a new location, a fundamental component of any search strategy. Secondly, sensor

error may result in target detection error when targets are encountered.

Selection of Search Lévy Exponent in Robot Swarms

The work done so far demonstrates a useful mapping from the distribution of target

locations to the e�ciency of a Lévy search pattern given a particular exponent.

Our genetic algorithm can optimise the Lévy exponent given multiple presentations

of a particular target clustering. Ultimately, we would like each robot to learn

the appropriate Lévy exponent for the distribution of targets in its environment

online. We assume the distribution of targets, swarm size, false negative rate, and
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Chapter 7. Adaptation of Lévy Exponents to Error and Collisions

degree of localisation error are global properties of the search environment. This

simplifying assumption allows there to be a single optimal Lévy exponent for each

search problem rather than depending on the robot position or time. This assumption

is unrealistic but provides an entry point for exploring the relationships between these

parameters and the best Lévy exponent, and allows the creation of a static lookup

table that maps these input parameters to the ideal, empirically determined H. We

have performed experiments in which each member of the swarm calculates the As we

will show these parameters interact with one another necessitating the consideration

of all these parameters when selecting H.

A critical task for online Lévy exponent selection is a measurement of these para-

meters by robots in real time. We have performed experiments which demonstrate

that individual robots calculating the Hopkins index as they encounter targets are

very quickly able to di↵erentiate between uniform and power law/clustered distri-

butions, but not reliably between power law and clustered distributions. The target

detection error rate can be measured by having a rover approach a location with

a known target and record how often the target is discovered. Swarm size can be

calculated via a gossip algorithm that performs only local communication. Localisa-

tion error depends on an unknown array of sensors, such as wheel encoders, global

positioning system (GPS), inertial measurement units (IMUs), magnetometers, etc.

Each of which has di↵erent noise properties that can be time and space dependent.

Some sensors, such as GPS, include noise covariance matrices in their output, others

do not. Localisation is a significant challenge in robotics and as such has received a

great deal of attention (Cox, 1991; Borenstein et al., 1996; Weingarten and Siegwart,

2005; Moore and Stouch, 2016). Our primary method of measuring localisation error

is the extended Kalman filter (EKF). EKFs have been important in our implementa-
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tion of the ALSA and DDSA strategies in the Gazebo simulator and physical robots.

In this chapter, we examine the swarm size question again in the presence of colli-

sions. We are e↵ectively measuring the influence of collisions as a function of swarm

size in comparison to that of oversampling which also depends on swarm size.

A strength of the Lévy approach is that it does not require communication

between members of the swarm. We endeavour to maintain those properties while

enabling online estimation of the distribution while recognising that measuring para-

meters such as swarm size requires local communication at the start of the search

process.

ALSA is currently not capable of estimating all these parameters. Instead, in

this chapter, we focus on mapping the relationships between these parameters and

the best Lévy exponent.

7.4 Related Work

Chapter 5, Section 5.6 on page 87 summarises work related to Lévy search by robots.

7.5 Methods

7.5.1 Extending the search area boundaries beyond the
area containing targets

In this work, we make a change in the size of the arena. We, and others (Levin,

2016), have observed that search agents in search areas with reflective boundaries

may exploit ballistic motion to cover the space e�ciently. Reflective boundaries

in the short time scales of our experiments allow searchers to move in a straight
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line without being in danger of leaving the search area. This observation follows a

prediction of Viswanathan et al. (2000) for a uniform distribution of targets in an

infinite plane without target replacement.

Figure 7.10 on page 159 shows the penalty that a swarm of searchers would pay

if a Lévy search pattern were employed that assumed there was no target detection

error. The best µ, in that case, is 1.4, but if robots experience a detection error rate

of 7

8

per second, then a µ of 1.4 would result in a search strategy that collects 81%

fewer targets than if a µ of 2.3 were used instead. The most e�cient strategy in the

error-free case under-performs in the cases with error, Lévy walks provide a simple

mechanism for adjusting and maximising search e�ciency even in the presence of

target detection error. Intuitively the H of a search pattern trades e�ciency for

robustness to error but probabilistically re-sampling. This has connections to the

e�ciency-robustness trade-o↵ discussed by Ackley et al. (2012).

Our Lévy search implementation has two related properties that emerge naturally

from the power-law distribution of steps: avoiding collisions and remaining in target

rich environments. As searchers move, their steps are interrupted by the discovery of

targets and by collisions with other rovers. In target rich areas even very long step

lengths will be interrupted by the discovery of a target. Since most step lengths will

be short, the searcher is strongly biased to remain in that area. The probability of

escaping increases as targets are locally depleted. Since the probability exists of very

long steps, once an escape path becomes available the searcher may travel a long way

into previously unsearched areas. The probability of moving out of the region with

targets as a function of the local target density decreases is mediated by the value

of µ, that governs the skewness of steps taken (Figure 7.1 on the next page).
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(a) H = 0.4, power law (b) H = 0.9, power law (c) H = 1.4, power law

(d) H = 0.9, clustered (e) H = 0.9, uniform (f) Wall positions.

Figure 7.1: Lévy Search Patterns are Naturally AdaptiveSearch patterns de-
pend on the intrinsic movement of searchers, and also on interactions with targets.
The distribution of targets governs, in part, the fractal dimension of the search pat-
tern. Searchers are corralled in high resource areas by the targets themselves. The
H determines the weight searchers give to being constrained to an area by the tar-
gets that are there. Compare the locality maintained by searches in regions with a
uniform distribution of targets (d) vs. those in highly clustered environments (e).
The fraction of available paths that end with a targeted encounter is greater in the
uniform case. In the clustered case targets tend to shadow one another resulting in
a much smaller target silhouette. This is not necessarily detrimental since searches
should move to new areas if locally targets are hard to locate. H balances the trade-
o↵ between remaining in a region with targets and moving on.
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A similar process occurs with robot collisions. Long steps are preferentially inter-

rupted preventing searchers from escaping a region dense with other searchers. Too

high a density of searchers results in ine�ciencies as robots waste time in collision

avoidance behaviour instead of searching for targets. It also results in oversampling,

though oversampling can be a benefit if targets are di�cult to detect. In this case

then decreasing H to produce enough long steps that searchers can escape areas with

many searchers dominates the optimal selection of the Lévy exponent µ. This e↵ect

can be seen in the decrease in H as swarm size increases in Figure 7.4a on page 154.

We use the ARGoS swarm robot simulator with simulated iAnts as described

in Section 6.6.2 on page 126. The experimental setup is largely as described in

Section 6.6.3 on page 127, that is we distribute 256 targets in uniform, power law,

and clustered configurations.

We place targets within the same 10⇥10m area described in Section 6.6.3 on

page 127, but place the walls 20m from the centre so they enclose a 40⇥40m region.

This was unnecessary in our study of the DDSA in Chapter 6 since in the error-

free case searchers follow the boundary rather than being reflected by it and so gain

no advantage. However, the central place foraging algorithm (CPFA) is constrained

by the arena barriers and so does not su↵er the possible downside of stochastic search

strategies in which searchers leave the search area entirely. The CPFA contains a

mechanism, the give-up-rate, that was included based on observations that ants limit

the distance they travel from the nest. In our experiments with the CPFA in envir-

onments where the area containing targets is the same as the entire searchable space

the CPFA’s genetic algorithm (GA) consistently selects values for this parameter

that approach zero. Small values imply that there is no penalty for extensive search

strategies approaching ballistic motion in an e↵ectively unbounded target space, but
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in which the maximum distance from the nest is limited. Increasing the boundary

distance in this chapter is intended to prevent this artefact from causing ALSA to

trivially select ballistic motion as the best solution.

Fig 7.2 on page 153 shows the dependence of the best search H on the number

of searchers. Despite the large variance a relationship between H and the number of

searchers is discernible. As the swarm size increases the most e↵ective H decreases.

The influence of the target distribution on the best H is also apparent, with the

1.2 being a better choice for the uniform distribution than for the power law and

clustered cases. This may be the result of uniform distributions corralling searchers

with higher H more e↵ectively than clustered configurations (compare Figures 7.1a

and 7.1d with 7.1e on page 147).

7.5.2 Going Big

Our simulations have all been designed so that they can be compared to our physical

swarms. We can then validate that our results hold outside the simulated world. For

that reason, we limit our simulations to relatively small search spaces with swarm

sizes that are close to the number of physical rovers that we have built.

However, a benefit of simulation is that we can go beyond the bounds of the num-

ber of robots we can build and the space we can reserve for experiments. Ultimately,

with real applications in mind the areas swarms of robots must search will be larger

than those we have discussed so far. The battery life of the UNM-NASA swarmie

robots we have developed is currently 10 h. To that end, Figure 7.9 on page 158

shows the results of increasing the target arena from 100m to 250 000m and 1 km2.

We also increase the search time to 8 h and the swarm size to 256 robots. The num-
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ber of targets remains 256 in a power law configuration. The time required to run

simulations this large is significant. As a result we are able to run 30 replicas for

the 0.25 km case but only 5 for the 1 km experiment. We include the CPFA evolved

for a power law distribution of targets as a point of comparison. It should be noted

however that the CPFA we use was evolved for a small arena not ones of the sizes

we use here.

7.5.3 Mapping the target detection error rate per second
to simulation iterations

The target detection error rate is calculated by solving for the probability in the

Bernoulli equation for 32 failures with the desired probability. We use 32 failures

because there are 32 simulation ticks per second. t = 32 ticks per second. These are

Bernoulli trials. With the probability of t failures being equal to d = (1� p)t. (d is

the probability of no detections in 1 second, p is the per tick detection probability).

Eqn. (Eq. (7.1)) Solve for p in terms of d:

d = pt =) p = d�t (7.1)

This simple conversion results in the detection rates shown in Table 7.1 on the

next page.

We perform analysis of variance (ANOVA)s to map the relationship between the

optimal mu that results from a parameter scan over µ. The mean H that resulted

in the most targets being collected is recorded and entered into theANOVA as the

output. The influence of each of the factors in the selection of µ can be estimated.
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Error Rate (s) 0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1
Detection Rate (1/32 s) 1 0.0629 0.0424 0.0302 0.0214 0.0146 0.0089 0.0042 0

Table 7.1: Error rate to simulation detection rate. We calculate values for 0
probability of target detection errors per second, and progress in increments of 1

8

until we get to a target detection error rate of 1.

The ANOVA tables can be found in Appendix B on page 203 along with description

of the ANOVA and caveats.
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7.6 Results

Figures 7.1 on page 147 shows search patterns associated with H and various target

configurations. Appropriately chosen H keeps the searchers within the target area

while higher H cause searchers to exit the target area reducing search e�ciency. The

target distribution also has an impact on containment of searchers in the area with

targets. Comparing Figure 7.1b, d, and e the probability of encountering a target

when taking a large step in a straight line is greatest for the uniform distribution

of the three target configurations. In contrast, searchers in the clustered case tend

to escape the area containing targets. The H interacts with the target distribution,

causing the e↵ective H to be higher in the presence of a uniform distribution of

targets than in the clustered case. This is in contrast to our findings in Chapter

5, Figure 5.9a on page 108 where we saw the reverse trend. However, in that case,

there was no penalty for choosing a low H in the presence of target clusters since the

arena boundaries prevented the searchers from leaving the area containing targets.

Figure 7.2 on the next page demonstrates that the mean value for the best per-

forming µ is near 2 for the single searcher case for all distributions. The most e�cient

choice for µ falls as the number of searchers increases. This is consistent with higher

H resulting in less unnecessary oversampling by spreading out searchers, and also

with reducing the number of collisions between searchers.

The increase in the choice of µ that maximises target collection as detection error

increases is shown in Figure 7.3 on page 154. The swarm increases oversampling as a

way to compensate for the lower probability of an individual robot detecting targets.

The trend is less pronounced in the clustered case than in the uniform case because

the probability of a searcher finding a target, even with a high detection error rate,
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is still good when targets are clustered together. When a robot encounters a cluster

of 64 targets the probability of seeing at least one of them compensates for the low

target detection rate, leading to the e↵ective use of site fidelity. This is not the case

when targets tend to be isolated, as in the uniform random distribution.

Figures 7.5a on page 155 and 7.4a on the following page summarise the depend-

ence of µ on detection error and on swarm size respectively. These figures show the

e↵ect of target detection error and swarm size on the best performing values of µ

over all target configurations. Figures 7.5b and 7.4b di↵er from one another because

7.4b contains data for a range of swarm sizes with zero error, whereas Figure 7.5b

has a range of error but a fixed swarm size of 8.

Figure 7.2: Dependence of optimal µ on the number of searchers by target configur-
ation. Interquartile boxplot. The selection of optimal H depends on the number of
searchers and the target configuration. 20 experiments per box.

Figure 7.10 on page 159 shows the e↵ect on the mapping between the Lévy

exponent µ and the number of targets collected. The maximum in the curves shifts

towards patterns with increased search intensity as target detection error increases.
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Figure 7.3: Dependence of Optimal µ on the Target Detection Error Rate. In-
terquartile boxplot. The selection of optimal H depends on the target detection
error rate and the target configuration. 20 experiments per box
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Figure 7.4: Dependence of optimal µ on swarm size and the target configuration. No
localisation or target detection error. 256 Targets. 40⇥40m arena. Targets placed
in a 10⇥10m region.

This may be explained by the compensation for increased target detection errors

by additional oversampling, and so providing more opportunities for a target to be

discovered. This experiment establishes that error in detection of targets makes

the selection of corresponding H worthwhile in at least some cases, with an 81%
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di↵erence in e�ciency in Figure 7.10. In order to explore this relationship further

with di↵erent target distributions we further analyse the data by performing ANOVA

(Table B.1 on page 205) and multiple comparisons (Figure 7.3 on the previous page)

over a range of target configurations and target detection error rates. This shifts the

best performing µ to higher values for all distributions to compensate for the target

detection errors, and to the lower values when compensating for the oversampling

and collisions that result from larger swarms.
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Figure 7.5: Dependence of optimal µ on the error rate and the target configuration.
No localisation error. 8 searchers. 256 targets. 30min time limit. 40⇥40m arena.
Targets placed in a 10⇥10m region. 60 repetitions per bar.
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Figure 7.6: Multiple Comparison Plots for target detection errors. 30 experiments
for each value of the target detection error rate. ALSA with µ = 1.7 shows a decrease
in e�ciency from 0 error to a 7/8 target detection error rate of 71.4%, with µ = 2.4
the reduction is 30%. For the DDSA the reduction is 62.5%. Power law configuration
of targets. No localisation error. 256 targets. 40⇥40m arena. Targets placed in a
10⇥10m region. 30min time limit. 60 repetitions per bar.
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Figure 7.7: Multiple Comparison Plots for Localisation Error. ALSA is more sus-
ceptible to performance degradation than the DDSA as localisation error increases.
30 experiments for each value of localisation error. Power law configuration of tar-
gets. No localisation error 256 targets. 40⇥40m arena. Targets placed in a 10⇥10m
region. 20 repetitions 40⇥40m arena. 30min time limit. 60 repetitions per bar.
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Figure 7.8: DDSA and ALSA e�ciency for various swarm sizes for 30min time limits
The DDSA is more e�cient than ALSA for smaller swarms but performance degrades
drastically for larger swarms. ALSA with higher H (1.4) follows a similar pattern
to the DDSA but the degradation due to swarm size is delayed. ALSA with a lower
H (0.7) is able to sustain performance increases to the largest swarms we consider.
30 experiments per box. Power law configuration of targets. No localisation error
and no target detection errors. Time limit is 30min. 256 targets. The DDSA has a
longer setup time than ALSA caused by increased congestion at the start point.
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0.25 km2 1 km2

Figure 7.9: Search Algorithm Comparison for Large Arenas. Experiment
setup: 256 searchers, 256 targets in a power law distribution 8 h. Both the DDSA
and ALSA with µ = 1.7 are able to find and collect targets in very large areas with
low density. In the 1 km2 case the target density is 1:10,000 that of our previous
experiments. The CPFA is presented for comparison, however this is the CPFA with
parameters described in Hecker and Moses (2015), which were evolved for a 10⇥10m
arena.
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0.5 Error
0.875 Error

81%

16%

Figure 7.10: E↵ect of Target Detection Error on Search E�ciency of µ for
the uniform distribution of targets. Vertical lines indicate the µ that results
in the best performance. Dashed lines and associated percentages show penalty in
e�ciency of choosing the best µ for the error free case and applying the resulting
search pattern to the 0.5 target error case (green dotted) and 0.875 target error case
(red dashed). Experiment setup: 8 searchers, 30min, uniform distribution of targets.
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(a) E↵ect of Swarm Size on Search E�-
ciency of µ - Uniform

(b) E↵ect of Swarm Size on Search E�-
ciency of µ - Power Law

(c) E↵ect of Swarm Size on Search E�ciency
of µ - Clustered

Figure 7.11: Dependence of optimal µ on swarm size and the target configuration.
No sensor error. 40⇥40m arena, targets restrivted to a 10⇥10m area.
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Figure 7.12: Adding collisions causes µ to depend on swarm size. Left panel is
a reproduction of Figure 7.4a. The right panel is a representation of Figure 5.9b,
showing that the optimality of µ in this range does not depend on the number of
searchers.
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Figure 7.13: The choice of µ a↵ects e�ciency in the presence of target detection
error. Selecting values of µ that result in lower fractal dimension results in more
e�cient search when the target detection error rate is low. Conversely, low fractal
dimensions perform better as target detection error rates increase.
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Figure 7.14: Search strategy e�ciency over long times. The distributed determin-
istic spiral algorithm (DDSA) increases in e�ciency over time as the swarm is able
to resolve initial crowding. Stochastic algorithms such as adaptable Lévy search al-
gorithm (ALSA) and central place foraging algorithm (CPFA) are relatively linear
in e�ciency over time, since crowding is less of a problem. Swarm size is 256, 256
targets in a power-law distribution, 0.25 km2 arena size.
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7.7 Discussion

Tables B.1 and B.2 on page 205 indicate that swarm size, target detection errors,

and target configuration are significant influences on the value of H that optimises

search e�ciency.

ANOVAs analysis suggests that the target detection error rate has a greater

influence than localisation on foraging e�ciency for ALSA with H = 0.7 (Table

B.3) and the DDSA (Table B.5 on page 206). In the DDSA case this confirms our

surprising result from Chapter 6 that localisation has very little influence on the

e�ciency of the algorithm. This is reversed for ALSA with H = 2.4 (Table B.4

on page 206). Revisiting sites by increasing H may help to compensate for lossy

sensors that increase the probability that targets will not be detected. The significant

di↵erence in performance due to selecting the appropriate H is shown in Figure 7.13

on page 161.

The number of searchers influences the optimal H but only in the presence of

error. In Chapter 5 we observed the influence of target distribution on the optimal

H but in that case, the simulated robots had target detection error rate of 50% per

second as determined from observation of the physical iAnt robot.

Multiple comparison analysis shows that all three target distributions influence

H in the absence of error but that when error is introduced both power law and

clustered distributions result in statistically indistinguishable values of H, however,

a significantly di↵erent value of H is optimal for the uniform case.

The distribution of target detection errors may serve to make the power law

distribution appear more clustered. We have observed that single targets are easily

missed when target detection errors are possible. Clustered resources, on the other
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hand, tend not to be missed because there are more opportunities to see at least one

target. Once one target has been detected site fidelity ensures that other targets in

the cluster may be detected.

The reduction in e�ciency due to localisation error in ALSA may be a con-

sequence of not reliably returning to the last position that a target was found (site

fidelity). This gives an indication of how much of the ALSA success depends on site

fidelity as compared to that of the DDSA, assuming the DDSA reduction in e�ciency

is also due to interference with site fidelity, though this remains unclear.

Figure 7.8 on page 157 shows an advantage of ALSA over the DDSA; it can

maintain e�ciency for larger swarms where the DDSA performance degrades due to

the increased number of collisions produced by a larger swarm. Since the DDSA is

deterministic, there are particular points in the search space that must be reached

for the algorithm to progress. If those points become unreachable due to occlusion by

robots in the swarm the performance of the DDSA degrades drastically. In contrast,

due to the stochastic nature of ALSA no points other than the central collection

point can become bottlenecks. ALSA by decreasing H can increase the extent of

search and more e↵ectively disperse searchers away from one anther, reducing the

number of robot collisions. Also as the number of searchers goes up, oversampling

of the search area near the central collection point increases. Increasing H reduces

oversampling and increases performance. This is clearly apparent in our observations

of ant colonies. Larger colonies disperse their foragers over a much wider area, in

part to avoid oversampling near the nest (Moses, 2005; Flanagan et al., 2012).

Robots are increasingly expected to operate in environments that have not been

designed to accommodate them. This requires that robot swarms be capable of
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performing search tasks in the presence of error. We examine the role of localisation

and target detection error in selecting an appropriate H for ALSA.

We find that localisation error has a surprisingly strong impact on ALSA com-

pared to the DDSA. The target detection error rate impacts both the ALSA and

DDSA, but can be compensated for by ALSA by increasing the H. (Tables B.3, B.4

and B.5 on page 206, and Figure 7.7 on page 156).

ALSA outperforms our benchmark DDSA as swarms increase in size. However, as

Figure 7.14 on page 162 shows, the DDSA closes the gap as over longer time periods

as it overcomes the initial crowding of searchers at the collection point. Decreasing

the H of ALSA allows it to avoid collisions by disbursing the searchers. Since this is

in opposition to how ALSA would compensate for a high target detection error rate

the interaction of these two factors becomes particularly interesting.

We have shown that the impact of error on Lévy search can be quantified and that

choosing appropriate Lévy exponents can be used to, at least in part, compensate

for degradation due to the target detection error rate and swarm size. Swarm size

is easily determined and could be used to increase the performance of the swarm by

increasing searcher dispersal.

Notice the reversal of fractal dimension as a function of the target distribution.

Here lower fractal dimension is associated with more clustered target configurations.

This is the opposite trend compared to Chapter 5. A possible explanation comes from

the change in boundary placement. In Chapter 5, the boundary closely surrounded

the targets, so a high fractal dimension was not penalised by leaving the target

placement region. However, in this chapter higher fractal dimensions do result in

leaving the area and so result in unproductive searchers. The distribution of targets

impacts the probability that a large step will take the searcher out of the arena. This
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Chapter 7. Adaptation of Lévy Exponents to Error and Collisions

is because the probability of encountering a target and returning home is greatest

for the uniform distribution. Therefore in the clustered case, where escape from

the productive region of the arena is most likely, the extent of search is reduced to

compensate.

This chapter highlights the interaction of Lévy search with the distribution of

targets. Lévy search is characterised by a power law distribution of movements.

Critically, those movements are not made independently of the target distribution.

When a searcher following a long trajectory encounters a target it’s movement is

stopped, the target collected, and a new movement vector and angle selected. The

angle will be uniformly chosen and but the step length is likely to be near the current

location. This increases the probability of finding another target if the positions of

targets are correlated. Even if a long step is selected, there is a chance that it will

be truncated by the discovery of another target nearby. If the region is depleted of

targets, these long steps will not be intercepted, and the searcher will move to a new

area where there may be targets. Figure 7.1f on page 147 shows how Lévy searchers

tend to be corralled in regions with targets. This also highlights the importance of

site fidelity in the CPF task, without which Lévy searchers would not be able to take

advantage of target locality. This also provides an explanation of why localisation

error is so detrimental to Lévy searchers in the CPF task since they are unable to

reliably return to the site where they last found a target.

7.8 Software

The software used in this chapter is available at:

https://github.com/BCLab-UNM/CPFA-ARGoS/releases/tag/v0.

166



www.manaraa.com

Chapter 7. Adaptation of Lévy Exponents to Error and Collisions

32-beta-21-g9a2a80b

https://github.com/BCLab-UNM/DDSA-ARGoS/releases/tag/0.3-beta

https://github.com/BCLab-UNM/ALSA-ARGoS/releases/tag/0.1-beta
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Conclusions

8.1 Swarm Search

Swarm search is a fundamental task in biological and robotic systems. The work

presented in this dissertation leads to a better understanding of Lévy search in the

context of robot swarms, includes the development of the distributed deterministic

spiral algorithm (DDSA), and advances our knowledge of a critical component of the

immune system.

Stone (1975) and Krebs (1978) provide analysis for single searchers that have in-

formation about the location of targets and knowledge of the conditional probability

of finding a target at a location over time. E�cient search strategies for uninformed

searchers have been studied by operations researchers who have designed geometric

solutions and by statistical physicists who have modelled search on the stochastic

propagation of particles. The latter has been widely used to describe the movement

of organisms in ecology and microbiology. Viswanathan et al. (1999) established
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that Lévy search with an exponent of 2 is an optimal stochastic strategy for foraging

by a single searcher with perfect sensors on an infinite plane, and where targets are

uniformly distributed and reappear after collection.

In this dissertation, we study realistic search problems in which agents with im-

perfect sensors search for targets that are in finite spaces, far from equilibrium, and

heterogeneously distributed (Ritchie, 2009). We focus on search by multiple agents

that do not have prior information about the distribution of targets.

We analyse the e↵ectiveness of two search strategies, Lévy search and spiral

search, for which optimality has been claimed in the single searcher case. By gener-

alising these approaches to swarms and measuring the e↵ectiveness of the resulting

search patterns in computer models, we find that the intensity-extent trade-o↵, form-

alised as the fractal dimension of the search pattern, can be used to adapt search to

common challenges in swarm search.

Increasing the intensity of search mitigates the e↵ects of error in target detec-

tion. Increasing extent allows for more e↵ective search when targets are distributed

uniformly, but not when targets are more clustered. However, this relationship de-

pends on the boundary conditions of the search area. When searchers are confined

to a target rich search area extent can profitably be increased even when targets are

clustered.

We find that swarm size has little impact on the intensity-extent trade-o↵ for

searchers in the absence of collisions. When we evolve the intensity-extent trade-

o↵, the resulting search patterns have high enough extent that oversampling is not

a significant factor. In the presence of collisions, however, more extensive search

patterns are clearly advantageous.
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We explain the increase in search intensity as a reaction to false negatives due

to sensor error. Searchers can utilise the oversampling that results from increased

search intensity to integrate the probability of target detection.

In the T cell case, the trade-o↵ between intensity and extent can also be explained

by the need to balance detection of rare and common antigen. In our robot study,

we find the same trade-o↵, with increased extent being an e↵ective way to increase

performance when targets are widely separated. Increasing intensity is more e↵ective

when targets are common.

We also find that feedback between targets and search patterns emerges naturally.

Searchers become confined in target rich areas as the discovery of targets causes

reorientation. The result is that searchers in target clusters increase the intensity of

search and so find more targets in the cluster. Those in less dense regions increase

the extent of their search pattern, which tends to result in the discovery of new target

rich areas. This emergent property is dynamic and reacts to the changes in target

distribution as targets are collected.

Collisions between searchers tend to cause them to stay in the same region, leading

to more collisions. In contrast to target encounters where the resulting increase in

search intensity tends to improve performance, the opposite is the case with searcher

collisions.

Localisation error has been suggested as a reason not to use deterministic spiral

search in the single searcher case. When a single searcher misses a target, it can-

not be recovered. However, we find that localisation error introduces a stochastic

element that allows missed targets to be rediscovered. This combined with the aver-

aging e↵ect of localisation error for swarms of searchers make the DDSA resilient to
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localisation error. In contrast, adaptable Lévy search algorithm (ALSA) is relatively

sensitive to localisation error, due to its reliance on site fidelity.

Site fidelity returns searchers to the site where a target was last discovered. The

result is that searchers that discover clusters tend to exploit that cluster. Site fidelity

is a major component in the success of the foraging strategies we have examined when

targets are distributed heterogeneously. The DDSA also uses site fidelity as a by-

product of its search pattern, but here the expanding spiral forms a front that allows

searchers to rediscover target clusters.

8.2 T cell Movement

Search by T cells for dendritic cells (DCs) in lymph nodes (LNs) is a critical part

of the adaptive immune response, and as such has important health consequences.

(Zeng et al., 2012; Donovan and Lythe, 2016) Understanding T cell search informs

out understanding of disease processes that target T cell movement.

When studying swarms of T cells, we test whether previously proposed search

models fit our observations and the e↵ect of those models on search e↵ectiveness in

lymph nodes. We find that T cell movement is well characterised by a log-normal

distribution of step lengths and speeds. T cells also exhibit correlation in turning

angles. We model T cell-DC interactions with the observed probability distribution

of step sizes and correlation between turning angles. Using this model, we find

that T cells balance the intensity-extent trade-o↵. Using our observations of swarm

search and published observations of T cells revisiting DCs we hypothesise that T

cells choose a search that allows for antigen signal integration. T cells must be able

to discover rare antigen widely separated in space and rapidly find nearby common
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antigen. We find that the search pattern T cells employ is as good as Brownian

motion at finding nearby antigen but more rapidly finds distant targets.

Using our agent based T cell model we provide evidence that there are regions

of the lymph node, hotspots, that are preferentially visited by T cells, and that the

search patterns of T cells that visit hotspots di↵ers from those that do not. The

nature of these regions is unknown, but fibroblastic reticular cell (FRC) and high

endothelial venule (HEV) have both been proposed as possible mechanisms (Mirsky

et al., 2011a; Munoz et al., 2014a).

We also use mutual information to measure non-uniform random interactions

between näıve T cells and DC targets. Our findings support the hypothesis that

T cells and DCs are in contact for longer than purely random models of movement

can explain. This suggests that chemical signalling or morphological features such

as the FRC network or HEV have a roll in bringing näıve T cells into contact with

DCs. This interaction appears to be weak, however. The application of our method

to other systems is required to determine the relative strength of these interactions.

Measurement of T cell-DC interactions in the presence of antigen, where chemical

recruitment is known to occur, would provide an example of a system with strong

interactions. Measurement of the strength of interaction between T cells with various

signalling receptors knocked-out and DCs would allow us to test which signalling

molecules, if any, are involved.

8.3 Connections

In nature, stochastic search processes reminiscent of ALSA are prevalent, while

deterministic movement patterns like the DDSA virtually unknown. Possibly for-

172



www.manaraa.com

Chapter 8. Conclusions

aging organisms are not, in fact, optimising target encounters. This objection is the

primary reason that Optimal Foraging Theory became controversial (Pyke, 1984).

For example, the desert harvester ants we study may not be optimising the collection

rate of seeds, rather, it may be more important to establish territorial boundaries to

prevent other ants from collecting seeds in their territory. Search patterns may have

evolved to reduce swarm loss to predation. In the immune system, it may be that

antigen transport to the LNs is optimised placing less pressure on the optimisation

of the search processes within LNs. Our work reinforces that stochastic search pro-

cesses are more tunable and can balance competing requirements better than search

processes like the DDSA.

Though the DDSA is e↵ective in our experiments, we do not test complex land-

scapes with obstacles. Complex search environments may interfere with deterministic

algorithms and prevent their execution. It may be telling that the only naturally

occurring spiral search pattern observed in a biological system is performed by ants

that live on salt flats devoid of obstacles (Müller and Wehner, 1994).

As we have shown, in large arenas with many searchers ALSA can be as e↵ective

as DDSA but only with the proper selection of an appropriate the Hausdor↵ fractal

dimension (H). Search time coordination may be more di�cult for many species

than optimisation of a stochastic strategy over evolutionary time.

Finally, the DDSA may not be a good strategy for continual target collection in

the case where targets are replenished over time. In both foraging and the immune

system search targets can appear during the search process. Indeed, the search

process does not have a well-defined beginning and end. The DDSA as currently

designed would have di�culty finding targets that appear near the collection point

after the DDSA search frontier has moved far from the starting point.
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Despite these caveats, our experiments suggest that the DDSA will prove to be

an e↵ective resource collection strategy for engineered swarms. Foraging by artificial

swarms often operate under fixed time constraints, do not have conflicting priorities

(such as avoiding predation), can communicate with one another and coordinate

their behaviours at search time.

We describe search patterns that enable robot swarms to e↵ectively search for

targets given realistic search parameters. This work provides a bridge between the

existing body of search theory and real-world robotic search problems. Also, we have

shown that T cell search in lymph nodes cannot be explained by simple stochastic or

guided search models. Using simulations of these systems as a ‘third way of science’

has allowed us to explore a wide variety of relevant search conditions and their impact

on the search strategies we have designed.

Our findings suggest several future directions, such as, using the tools we have

developed for analysing cell search patterns in other areas of the immune system,

and application of the DDSA and ALSA to in-situ resource utilisation tasks.

When targets are sparsely distributed over large areas ALSA is at least as e↵ective

as established information based search strategies such as the central place foraging

algorithm (CPFA). ALSA is a remarkably simple search strategy that requires no co-

ordination between searchers and no information storage. Viswanathan et al. (1999)

and others have shown that Lévy search is e�cient for individual searchers and that

the optimal fractal dimension can depend on the sparsity of targets, we have shown

that the intensity-extent trade-o↵ applies to many other critical aspects of swarm

search such as sensor error, swarm size, and the configuration of targets. In the

future, as swarms of agents are applied to more search problems, this understanding

of the intensity-extent trade-o↵s will allow more e↵ective search strategies.
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A.1.2 Supporting Figures

Figure A.1: Example Tracks.
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Figure A.2: MSD Exponent Histograms for Various r2 Filter Values. As
the linear regression slopes are filtered by the r2 statistic, the histogram narrows but
maintains its mean value. (A) r2 > 0, 3.5% of tracks filtered, (B) r2 > 0.25, 21%
filtered, (C) r2 > 0.5, 33%, (D) r2 > 0.75, 50%, and r2 > 0.9, 69% of tracks filtered
out. (E) r2 > 0.8 with regions of interest marked.

Figure A.14: A potential source of error is the dependence of the observed
speed on the frame rate of observation. We test whether this confounding factor
exists in our experiments by fitting a linear model to the mean speed for each of our
seven binned microscope video frame rates vs the observed mean speed. Our frame
delays range from 13 s to 20.7 s. The slope of the best MLE fit is 0.0013. The p-value
is 0.66 and the r2 is 0.041. Together this suggests there is no relationship between
frame rates and observed speed and that the observed speeds are not artifacts of the
measuring rate.
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Figure A.3: Histogram of power law exponents fit to the CCDF of step
length for tracks with varying percentages of their steps in the power law
tail: (A) all tracks, (B) tracks with at least 50%, (C) 70%, and (D) 90% of steps
in the power law tail. An increasing fraction of steps in the tail results in values
being more likely to be between 1 and 3 but as a total fraction of all tracks those
well fit by a power law falls rapidly, for (A) 35%, (C) 31%, (D) 24%, and (E) 7% of
total tracks are represented. (E) Fraction of Tracks with Lévy characteristics. Power
law exponents, µ, for step length and ↵, for displacement. Tracks are grouped by fit
quality (GoF). Retained percentage refers to the amount of data discarded in order
to obtain a power law fit (see methods for µ fitting). Displacement ↵, values are
filtered by r2.
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Figure A.4: Prevalence of Tracks with Lévy Characteristics.
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Figure A.5: Weibull probability plot. The gamma probability distribution
has comparable negative log-likelihood scores to the lognormal distribution (speeds
shown here). The lognormal model overestimates the probability of high speeds at
the tail of the distribution while the gamma distribution over estimates the proba-
bility of very low speeds.

Figure A.6: Sample DC target cluster distributions in simulation. Panel A:
10 µm radius clusters with Hopkins index = 0.2. Panel B: 20 µm [sic: 20 µm] radius
clusters with Hopkins index = 0.32. Panel C: 40 µm radius clusters with Hopkins
index = 0.44.
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Figure A.7: Mean squared displacement for simulated search models. Num-
bers in color indicate the slope of the mean-squared linear fit to the log-log trans-
formed displacement curve. As expected, Brownian motion has a slope close to one,
as does the lognormal step distribution model. All other models produce superdif-
fusive motion.
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Figure A.8: We found no evidence of distinct subpopulations defined by
variance and mean speed. An expectation maximization Gaussian mixture model
finds that clustering tracks according to track speed and track variance results in a
single grouping. The color bar and contour map indicate the height of the best-fit
Gaussian model. Increasing the number of Gaussians to fit incrementally up to 16
does not reveal any natural clusters. This figure supports the skew plot Fig 3.4 on
page 35C. Example field (1 of 41).
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Figure A.9: The dependency between the angle used to calculate steps from
T cell positions and the number of steps resulting. For example at threshold
of 180� all steps in each track are combined and the resulting number of steps in the
population is small. The influence of the angle threshold on the number of combined
positions is smooth. No natural choice of thresh- old angle is apparent.
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Figure A.10: As the number of data points in tracks lasting more than 10
minutes drops, MSD becomes dominated by noise. As a result we perform
linear regression only on the first 10 minutes [sic: 10min] of each track (green line).
(1 of 7 datasets)

.
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Figure A.11: Visualization of search tracks. Dark green targets are undiscovered.
Targets become cyan if they are within the search volume of a T cell track (detected).
In this example targets are grouped into clusters of 10 with radius 10µm. Each T
cell track is assigned a random color to help distinguish them from one another.
Example field (1 of 41).
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Figure A.12: Distribution of hotspot visitor counts. Spot counts for (A) sim-
ulated locations over 10 repetitions, and (B) observed locations. Example plot of
observed field and the corresponding simulation (1 of 41). The red lines correspond
to the hotspot threshold for this field (µ+2� of the simulated location visitor counts).
For this field the threshold is 4.047. Of the 498 locations in the simulated field 17
(3.41%) are hotspots (mean of 10 simulations). The observed field had 621 locations,
of which 78 (12.5%) are hotspots, an increase of 258% over simulation.
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Figure A.13: Visualization of hotspots and hot tracks in 4 of 41 observed
fields. Hotspots are indicated by black rectangles where the area is proportional
to the number of unique visitors. Hot tracks are displayed in color with each color
corresponding to a track. Tracks that do not visit a hot spot are shown in grey with
the shades corresponding to individual tracks. Plots are a projection of a 3D space
into the xy-plane. Overlapping hotspots indicate distinct z-coordinates.
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A.1.3 Supporting Tables

Distribution AIC E AICc (⇥105) nlogl (⇥105) KS AD (⇥103) �2 (⇥103) BIC
Lognormal 1 2.65 (2) 2.65 (2) 0.06 (4) 1.50 (2) 8.06 (7) 5.29 (2)
Gamma 0 5.34 (3) 2.67 (3) 0.04 (2) 0.57 (1) 4.15 (4) 5.34 (3)
Gaussian 0 6.72 (10) 3.36 (10) 0.10 (5) 3.57 (4) 26.56 (9) 6.72 (10)
Power Law 0 9.16 (15) 4.58 (15) 0.33 (8) 38.02 (6) 154.68 (11) 9.16 (15)
Maxwell 0 8.04 (14) 4.02 (13) 8.04 (14)
Exponential 0 7.34 (11) 3.67 (11) 0.09 (7) 2.38 (3) 13.13 (8) 7.34 (11)
Gen. Pareto 0 5.48 (5) 2.74 (5) 0.04 (2) 19.89 (5) 5.48 (5)
Fatigue 4.98 (1) 2.49 (1) 0.05 (3) 597.0 (9) 2.95 (2) 4.98 (1)
Nakagami 5.41 (4) 2.7 (4) 5.41 (4)
Weibull 5.51 (6) 2.76 (6) 0.05 (3) 1117.1 (11) 6.57 (6) 5.51 (6)
Loglogistic 5.56 (7) 2.78 (7) 0.04 (2) 442.86 (8) 4.01 (3) 5.56 (7)
T-location scale 5.71 (8) 2.86 (8) 5.71 (8)
Extreme Value 7.80 (13) 3.9 (13) 0.03 (1) 278.92 (7) 2.69 (1) 7.80 (13)
Inv. Gaussian 6.01 (9) 3.04 (10) 0.03 (1) 696.67 (10) 4.96 (5) 6.01 (9)
Logistic 7.73 (12) 3.87 (12) 7.73 (12)
Rayleigh 10.06 (16) 5.29 (16) 0.17 (6) 14565.0 (12) 56.65 (10) 10.06 (16)
Rician 21.40 (17) 10.71 (17) 21.40 (17)

Table A.1: Extended Step Fit Statistics. Table shows the Akaike information
criterion evidence ratio (AIC E), applied to first 7 rows only; the corrected Akaike
information criterion (AICc); negative log-likelihood (nlogl), Kolmogorov-Smirnov
(KS), Anderson-Darling (AD), chi- squared (�2), and Bayesian information criterion
(BIC). Score ranking is in parentheses. Di↵erences in BIC and AICc scores are less
than 1:103 of the AICc score.
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Distribution AIC E AICc (⇥105) nlogl (⇥105) KS AD (⇥103) �2 (⇥103) BIC
Lognormal 0 -3.68 (5) -1.84 (4) 0.04 (5) 784.54 (3) 8.06 (4) -3.68 (5)
Gamma 1 -3.87 (1) -1.93 (1) 0.03 (3) 579.35 (2) 4.15 (2) -3.87 (1)
Gaussian 0 -3.23 (11) -1.61 (9) 0.09 (9) 3578.20 (9) 26.56 (9) -3.23 (11)
Power Law 0 0.245 (14) 0.122 (12) 0.33 (12) 28021 (13) 154.68 (12) 0.245 (14)
Maxwell 0 -2.24 (13) -1.12 (11) -2.24 (13)
Exponential 0 -3.68 (5) -1.84 (4) 0.07 (7) 3122.80 (8) 15.79 (6) -3.68 (5)
Gen. Pareto 0 -3.78 (4) -1.89 (3) 0.01 (1) 6645.50 (10) -3.78 (4)
Fatigue -3.67 (6) -1.83 (5) 0.09 (9) 2940.10 (7) 16.57 (7) -3.67 (6)
Nakagami -3.84 (3) -1.92 (2) -3.84 (3)
Weibull -3.86 (2) -1.93 (1) 0.03 (2) 395.88 (1) 2.94 (1) -3.86 (2)
Loglogistic -3.67 (6) -1.83 (5) -1.83 (5) 1817.1 (6) 20.05 (8) -3.67 (6)
T-location scale -3.27 (9) -1.63 (8) -3.27 (9)
Extreme Value -2.37 (12) -1.18 (10) -1.18 (10) 863.43 (4) 7.40 (3) -2.37 (12)
Inv. Gaussian -3.53 (7) -1.76 (6) 0.11 (10) 8931.40 (11) 46.51 (10) -3.53 (7)
Logistic -3.26 (10) -1.63 (8) 0.06 (6) 1468.30 (5) 11.74 (5) -3.26 (10)
Rayleigh -3.34 (8) -1.67 (7) 0.14 (11) 10948.0 (12) 61.20 (11) -3.34 (8)
Rician -3.34 (8) -1.67 (7) -3.34 (8)

Table A.2: Extended Speed Fit Statistics. Table shows the Akaike information
criterion evidence ratio (AIC E), applied to first 7 rows only; the corrected Akaike
information criterion (AICc); negative log-likelihood (nlogl), Kolmogorov-Smirnov
(KS), Anderson-Darling (AD), chi-squared (�2), and Bayesian information criterion
(BIC). Score ranking is in parentheses. Di↵erences in BIC and AICc scores are less
than 1:103 of the AICc score.

Distribution -log Likelihood (⇥105) MLE Parameters
Lognormal 4.89 µ = 0.52, � = 1.00
Gaussian 6.53 µ = 2.75, � = 3.24
Maxwell 8.40 a = 6.00
Power Law 8.05 ↵ = 1.19

Table A.3: Maximum likelihood estimated parameters and associated like-
lihood scores for steps calculated using a 30� threshold. The lognormal
probability distribution is still the best fit when steps are calculated using a 30�

rather than 15� threshold. Compare to Table 1 in the main text.

A.2 Extended Materials and Methods

A.2.1 Analysis of T cell Tracks

Cell motility was analyzed with Imaris 6.0 (Bitplane AG, Zurich, Switzerland).

Tracks with fewer than 3 time steps were removed from consideration. Tracks with
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total length or displacement from the start location less than 17 µm over the course

of the observation were assumed to be non-motile and not included in analysis. The

point sequences generated by Imaris were used to create position vectors joining ad-

jacent cell locations (sample tracks Fig. A.1 on page 178). The Euclidean norm for

each vector was calculated and divided by the time resolution to produce speeds.

A nested ANOVA analysis (Letendre et al., 2015) showed no di↵erences between

experiments replicated 41 times, using 17 mice, resulting in 159,746 positions over

5,077 T cell tracks. The combined track length for all cells was 34.8 cm and total

observation time was 17 hours and 12 minutes. The mean track length is 34 positions

with a median length of 21 and a max of 200. The maximum T cell velocity over all

observations was 0.9 µm/s with a mean of 0.11 µm/s.

Microscopy fields with time resolution di↵erences of less than 1 second were com-

bined into groups so that mean squared displacement and vector autocorrelation

could be calculated separately for groups with similar time resolution. Seven datasets

were generated from the 41 observation fields. The autocorrelation plot, shown in

Fig. 3.2 on page 33E as a representative example, contains data from fields with time

resolutions between 15 s and 16 s, and consists of 23,169 vectors from 537 tracks.

Speed measurements can be sensitive to the frame rate of observation. To de-

termine whether the observed speed was influenced by the frame rate we fit a linear

response model to frame delay and mean speed. The speed is not linearly correlated

to the frame delay; as can be seen in Figure A.14 on page 179.
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A.2.2 Distribution Fitting

Following Fisher (1925) we use maximum likelihood estimation (MLE) to parame-

terize candidate PDFs. De Jager et al. provide details of the MLE method in their

analysis of the motility patterns of mussels (de Jager et al., 2014). We fit probability

model parameters using cumulative distribution functions (CDF), rather than by

binning data which has been shown to bias conclusions about random walk distribu-

tions [8,9]. Software for fitting distributions was written in Matlab (Mat, 2014). We

examined a further 57 commonly used PDFs which were narrowed down to 17 for

which we calculated negative log-likelihood scores (Tables A.1 on page 190 and A.2

on page 191) as candidate models.

A variety of probability distributions have relatively good statistical fit scores.

Those that do are heavy-tailed, such as gamma and Weibull. Lognormal, while not

the best fit is consistently high in the rankings for all goodness of fit measures (GoF),

except the chi-squared test for step sizes. We choose to use the lognormal distribu-

tion for our simulations because it is relatively well understood mathematically and

intuitively. See Fig. A.5 on page 182 for a comparison of the lognormal CDF to

the gamma and Weibull CDFs. The lognormal distribution shows up repeatedly in

biological contexts (Beltman et al., 2007; Furusawa et al., 2005)[sic: Beltman et al.

(2007) is not an appropriate reference] so we have made it our representative for the

heavy-tailed family of distributions.

Five PDF models for step length and speed were selected for analysis based

on a combination of their negative log-likelihood scores, their importance in other

biological processes, and their previous use in modeling T cell movement. Those

models are lognormal, Maxwell, Gaussian, exponential, and power law PDFs. Our
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selection of the relative goodness of fit (GoF) of each candidate PDF to empirical

data was evaluated using likelihood functions, Anderson-Darling (AD), Bayesian

information criterion (BIC), corrected Akaiki Information Criterion (AICc), and the

Kolmogorov-Smirnov (KS) test. We found all these measures to be in rank agreement

and therefore present only the likelihood measure. We observe that for all GoF

measures lognormal is ranked as a better fit to our observed step and speeds than the

alternatives. In addition to track speeds, which we measure directly, we determined

the distribution of step lengths, which is an essential element in the definition of

Lévy walks. Since we image T cell motility frame by frame, we cannot track each

cell continuously to ascertain step length. Instead, we define a step as a vector of T

cell motion that does not deviate beyond 15� from the original direction (see Fig. A.9

on page 185 for analysis of threshold dependency). We did not find any discrete angle

thresholds and when we used 30� as a cuto↵ angle to determine step length, we saw

the same ranking in MLE fits (Table A.3 on page 191).

It is di�cult to fit power laws in their simplest formulation, f(x) = Cxy, with its

infinite right variance, to necessarily finite biological systems. Additionally, power

law behavior is often found in combination with other processes. Therefore, it is

common to fit only a portion of the data to a power law, using formulations such

as the generalized Pareto distribution, exponential cuto↵, or generalized Lévy walk.

In previous work (Fricke et al., 2013) we modelled T cell search as a Lévy flight

and found a good fit to T cell motion using the generalized Pareto distribution.

Following Clauset et al. (2009), we fit power laws using MLE and with the power

law PDF: P(x) = µ�1

xmin

⇣
x

xmin

⌘µ

, where x
min

is the smallest observed value, P(x) is

the probability of x occurring, and µ is the estimated parameter. We used the x
min

value with the best KS score of all possible choices as an estimator of the beginning
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of a power law tail. The percentage of positions in a track in the power law tail

gives us a measure of the quality of the power law fit. Using this measure we show

that a power law fit to the population of observed steps excludes 94% of the data

(Fig. 3.1 on page 32F and H). This measure is also used to filter tracks in [Fig.] A.3

on page 180.

A.2.3 Autocorrelation and Cross-Correlations

Velocity autocorrelations were calculated following Qian et al. (1991) and Tarantino

et al. (2014). The autocorrelation function, C
auto

, is the ensemble mean for the n�1

possible delay times given the n vectors defining a T cell track.

C
auto

(�t) = hv(ti) · v(tj)i, 8i, j : �t = ti � tj where ti, tj are times. (A.1)

The result is a measure of how much T cell direction depends on previous directions

as a function of time delay. Letting v(pk(t)) be the unit velocity vector at time t

belonging to the kth path, we defined the cross-correlation function, C
cross

, to be:

C
cross

(p) = v(pk(t)) · v(pm(t)), 8k,m where pk, pm are T cell paths. (A.2)

This measures the step angle dependence between T cell paths at the same moment

in time, that is, a measure of drift due to global e↵ects on the observation field.
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A.2.4 Mean Squared Displacement

Mean squared displacement (MSD) coe�cients, commonly called the ↵ exponent

were calculated using least-squares polynomial fit by numerically solving the associ-

ated Vandermonde matrix (Von Mises and Geiringer, 1964) and fit quality assessed

with the r2 measure. Parametric and linear fits were also made to mean displace-

ment. In Fig. 3.1A we present only the first 10 minutes of observation at which point

the curve reaches its first stationary inflection which is indicative of unconstrained

motion and therefore appropriate for determining ↵. In addition, in this study few

tracks persist beyond 10 minutes and so the MSD signal also becomes dominated by

noise (Fig 3.1A top and Fig. A.10 on page 186).

A.2.5 Heterogeneity

We used mixed Gaussian clustering (McLachlan and Peel, 2004) to investigate whe-

ther there is heterogeneity the distribution of track speeds among T cell tracks with

di↵erent track mean speeds. The mean speed and variance in tracks is shown in both

Fig. 3.2 on page 33 and in Fig. A.8 on page 184. We further tested for heterogeneity

by comparing track speed skew (Fig. 3.4 on page 35) and AIC evidence ratios as a

function of mean speed (data not shown).

A.2.6 Search E�ciency Simulation

We built a simulation to test how di↵erent movement patterns a↵ect the e�ciency

with which T cells encounter DC targets, implemented as a continuous (floating-

point) 3D model written in C++. Boost libraries (59) were used to generate variates
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drawn from model PDFs. Because the clustering and density of targets can influence

which movement types are most e�cient, we replicated the estimated density of DCs

and varied the degree of clustering in our simulations.

Beltman et al. report a DC density in lymph node T cell zones of 2-5% [11,18].

We use this to calculate a target DC density of 3.17 ⇥ 10�5 targets/µm3. Our ob-

served fields have an average volume of 6.3 ⇥ 106µm3. We scale the number of

targets as a function of field volume in order to maintain the same target density

between simulation fields. DCs were clustered into groups of 10 and were uniformly

distributed within spheres defining a cluster. By varying the sphere radius, we con-

trolled the degree of clustering from uniform to highly clustered. A 3D version of

the Hopkins statistic (Hopkins and Skellam, 1954) was used to measure the resulting

non-uniformity of target placement (Tables 3.1 on page 37 and 3.2 on page 38). In

the Hopkins statistic scores range from 0 to 0.5 where 0 is highly clustered and 0.5

indicates no clustering.

T cell tracks were observed and recorded as 3D coordinate sequences within a

bounding box defined by the visible section of the ex vivo lymph node. Idealized

models (Brownian, CRW, Power Law, etc.) of search were parameterized by the

speeds and turning angles estimated from observation (see Distribution Fitting).

Searchers in the idealized model start at the same initial positions as the observed

T cells, and exist in a volume equal to the observed field volume. Candidate search

patterns were generated for each of the 41 observation fields. For sample visualization

of each idealized model search as well as the observed see Fig. A.11 on page 187.

Similar to (James et al., 2010) our measure of e�ciency, E(k,Obs), for a combination

of n observed tracks (Obs), search strategy, and target distribution is the number of

targets discovered, F(k) ,by each searcher, k, divided by the time expended, T(k), by
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the kth track. The distance covered by track k is D(k), and the total distance covered

by observed tracks is D(Obs). L is the property that the total distance expended by

searchers does not exceed the distance expended by observed T cells.

E(k,Obs) =

L(k)X

k=1

F(k)

L(k)X

k=1

T(k)

, where L(k) =
kX

i=1

D(i) < D(Obs). (A.3)

E�ciency measure E is the number of targets found divided by the sum of the time

used by searchers. Since we modelled walks rather than flights (i.e. speeds are finite)

the sum of D(k) for all simulated tracks k was limited to the total distance travelled

by observed T cells. Therefore the average velocity of the population of searchers is

kept within the observed range. In the limit where the field is saturated with targets,

the e�ciency of unique contacts would be the swept volume of each track. Based on

an assumed radii of 5 µm for DCs and T cell, targets were marked as discovered if a

searcher track passed within 10 µm of a target point. We define two versions of F(k),

one that increments its output value only when a target was not previously detected

by searcher, k, and another that increments for all targets found. These two versions

of F(k) allow us to record unique contacts and total contacts (Fig. 3.4 on page 35).

The simulation measures the target encounter rate and determines, using the

Mann-Whiney test, whether the candidate search models search e�ciency is signifi-

cantly di↵erent from that observed in T cells. We use the Mann-Whitney test because

the observed and simulated distribution of e�ciencies is non-Gaussian. Bonferoni

correction (Bland and Altman, 1995) was used to adjust for the minimum p-value

that can be called significant. Simulations were replicated 100 times per field, pro-
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ducing 4,200 e�ciency data points for each search model. The entire process was

repeated 10 times in order to generate confidence intervals for the simulation; in all

this results in 41,000 e�ciency samples.

A.2.7 Identifying Hotspots and Hot Tracks

In order to test whether the environment within LNs influences T cell movement

we extend an analysis begun in (Fricke et al., 2015). To determine hotspots, we

use the LogMCRW simulation as a null model. We discretize the LN into cubes

with 20µm edges (about twice the diameter of a T cell). We record the number of

times a location is visited by unique T cells in simulation (repeated 10 times). We

use a 2� (standard deviation) threshold for determining which locations are visited

particularly frequently than expected and call these hotspots (threshold indicated

by red line in Fig. A.12 on page 188). This is repeated for each of the 41 individual

observational fields. We then determine hotspots for observed data as locations

visited more frequently than the threshold set by the null model that corresponds

to the individual observation field (graphically shown in Fig. A.13 on page 189). All

other locations are called cold spots.

We define hot tracks to be T cell tracks that visit hotspots and cold tracks to be

T cell tracks that do not. We also examine the number of visits by hot tracks to cold

spots and hotspots.

A.3 Modelling Software Interface
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Figure A.15: Track E�ciency Analyser. Screen capture of the PowerSearch3D inter-
face. The user selects files containing observed track data (exported from Imaris for
example), selects idealized search patterns to compare with the empirical data, and
chooses parameters such as the density of targets and whether to limit searchers by
time or distance. In the example above 7 empirical experiments have been selected
and 4 idealized search patterns are being generated. The user has elected to limit
search by distance covered. The software measures the number of target contacts for
each experiment and generates idealized patterns that correspond to the observed
search volumes, number of searchers, and the total distance and time spent by the
searchers. Statistics, such as the Mann Whitney test, are used to compare the e�-
ciency of the search patterns and displayed to the user at the end of the run. This
tool was written in C++ with Qt.

A.4 Mutual Information Code

1 % Mutual information

2 % This function takes two 3D images and returns

3 % the mutual information.
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4 % Usage: h = mutual info( image a, image b, #bits of color )

7 function [h,joint prob]=mutualinfo(image a,image b,color depth)

8 a = jointinfo( image a, image b , color depth );

9 hab = 0;

10 % Matlab provides entropy functions

11 ha = entropy(image a);

12 hb = entropy(image b);

13 joint prob = a./ numel(image a);

14 for i = 1:color depth

15 for j = 1:color depth

16 if joint prob(i,j) == 0

17 continue;

18 end

19 %JOINT ENTROPY

20 hab = hab + joint prob(i,j) * log2(joint prob(i,j));

21 end

22 end

23 hab = -hab;

24 h = ha + hb - hab;

25 end

26

27 function h=joint info3D( image a, image b , color depth )

28 rows=size( image a, 1 );

29 cols=size( image a, 2 );

30 layers = size( image a ,3 );

31 N=color depth;

32 h = zeros( N , N );

33 for k = 1:layers

34 for i = 1:rows

35 for j = 1:cols
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36 h( image a(i,j,k)+1,image b(i,j,k)+1 )...

39 =h(image a(i,j,k)+1,image b(i,j,k)+1)+1;

40 end

41 end

42 end

43 end
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B.1 Two-Way Analysis of Variance

We make extensive use of 2-way analysis of variance (ANOVA) which performs linear

regression tests on the variation within experiments grouped by factors of interest

(such as swarm size) vs variation between those groups. In other words ANOVA

measures the correspondence between changes in a factor and the output in compar-

ison to variance not attributable to the factors of interest. We break our analysis

into 2-way ANOVAs so that we can make pairwise comparisons of various factors.

This pairing also makes plotting the associated multiple comparison plots easier. A

full factor analysis and n-ANOVA would be prohibitively expensive in terms of com-

puting resources. The table headings are as follows: Factor, the parameter being

varied in order to determine its influence on the output. SS is the Sum of Squares,

quantifies the variability between groups within the corresponding factor (such as
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the groups of swarm sizes for the swarm size factor)). The SS indicates the relative

influence of the factor on the output. MSE is the mean squared error of the linear

regression associated with the corresponding factor. F is the Fisher statistic and is

the ratio of inter-group variation to intra-group variation, informally is is a measure

of how much variation in the output is explainable by the factor of interest as com-

pared to other sources of variation in the experiments. p-value, informally this is a

score indicating whether the hypothesis that the corresponding factor influences the

output is statistically supportable. The interaction row indicates the degree to which

the two factors under consideration influence the output in combination. The error

row indicates how much variation in the the data set is not explained by variation

in the two factors under consideration.

It should be noted that ANOVA assumes Gaussian distributed samples, or for

large sample sizes a distribution of samples with a common skew direction. These

assumptions are violated for Tables B.1 on the following page, B.2 on the next page,

and B.3 on page 206 which contain factor samples which are not Gaussian or skewed

in the same direction. For the remaining ANOVA datasets the skew is consistently

to the left. While technically violating the assumptions of the ANOVA, Glass et al.

(1972) provide evidence that, in practice, ANOVA is robust to false positives even

when the Gaussian assumption is violated. However the p-values based on the F-

statistic will often be reduced, overestimating the statistical significance of factor

influence. We provide Tukey multiple comparison plots for each ANOVA in order to

support the conclusions we draw from ANOVA Tukey (1949).
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B.2 ANOVA Tables

Factor SS df MSE F p-value
False Negative Rate (s�1) 22.84 7 3.263 25.38 < 10�4

Target Distribution 11.3005 2 5.6502 43.95 < 10�4

Interaction 3.682 14 0.26301 2.05 0.0136
Error 58.62 456 0.1286
Total 96.44 479

Table B.1: ANOVA Results. Dependence of optimal µ on false negative target
detection rate (per second) and the target configuration. The target configuration
and false negative rates are statistically significant factors in the empirically optimal
H. 20 experiments for each combination of factors and each tested H (N = 9600, of
which 480 experiments corresponding to the best H are analysed). 8 robots.

Factor SS df MSE F p-value
N Searchers 6.555 4 1.639 11.17 < 10�4

Target Distribution 13.64 2 6.822 46.51 < 10�4

Interaction 3.105 8 0.3881 2.65 0.0082
Error 41.805 285 0.1467
Total 65.11 299

Table B.2: ANOVA Results. Dependence of optimal µ on swarm size and the target
configuration. 20 experiments for each combination of factors and each tested H (N
= 6000, of which 300 experiments corresponding to the best H are analysed). Power
law configuration of targets. No localisation or target detection error.

205



www.manaraa.com

Appendix B. ALSA ANOVA Tables and Description

Factor SS df MSE F p-value
Localisation Error 110632.2 5 22126.4 114.1 < 10�4

False Negatives 327572.6 7 46796.1 241.31 < 10�4

Interaction 18215.1 35 520.4 2.68 < 10�4

Error 269944 1392 193.9
Total 726364 1439

Table B.3: ANOVA of False Negatives and Localisation Error on Targets Collected
for Fractal Dimension 0.7. 30 experiments for each combination of factors (N =
10080). Power law configuration of targets. 8 robots.

Factor SS df MSE F p-value
Localisation Error 397570.4 5 79514.1 517.58 < 10�4

False Negatives 37679.8 7 5382.8 35.04 < 10�4

Interaction 20817.5 35 594.8 3.87 < 10�4

Error 213848.3 1392 153.6
Total 669916 1439

Table B.4: ANOVA of False Negatives and Localisation Error on Targets Collected
for Fractal Dimension 1.4. 30 experiments for each combination of factors (N =
10080). Power law configuration of targets. 8 robots.

Factor SS df MSE F p-value
Localisation Error 8761 5 1752.2 15.61 < 10�4

False Negatives 1579457.9 7 225636.8 2009.74 < 10�4

Interaction 20900.3 35 597.2 5.32 < 10�4

Error 156281.9 1392 112.3
Total 1765401.1 1765401.1 1439

Table B.5: ANOVA of False Negatives and Localisation Error on Targets Collected
for DDSA. 30 experiments for each combination of factors (N = 10080). Power law
configuration of targets. 8 robots.
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Permission to Reproduce
Previously Published Content

The University of New Mexico requires that previously published works included in

this dissertation be licensed by their respective copyright holders. Copies of those

licences must be included in the dissertation. If the material was published under

an open access license the guidelines for use must be included in lieu of a license.

Accordingly this appendix includes the following documents:

• A license to reproduce material in Chapter 5 for which Cambridge University

Press is the copyright holder.

• The guidelines for open access use of material in Chapter 3, previously pub-

lished by the Public Library of Science and the governing Creative Commons

legal code.
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• Instructions for reproduction of IEEE publications in a dissertation. The con-

tents of Chapter 6 previously appeared in the proceedings of the International

Conference on Intelligent Robots and Systems (IROS), published by the IEEE.
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When citing non­article content from a PLOS website (e.g., blog content), provide a link to the content, and cite the title and author(s) of
that content.

For examples of proper attribution to other types of content, see websites such as Open.Michigan.
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Creative Commons Legal Code

Attribution 4.0 International

Official translations of this license are available in other languages.

Creative Commons Corporation (“Creative Commons”) is not a law firm and does not provide legal
services or legal advice. Distribution of Creative Commons public licenses does not create a lawyer­
client or other relationship. Creative Commons makes its licenses and related information available on
an “as­is” basis. Creative Commons gives no warranties regarding its licenses, any material licensed
under their terms and conditions, or any related information. Creative Commons disclaims all liability
for damages resulting from their use to the fullest extent possible.

Using Creative Commons Public Licenses

Creative Commons public licenses provide a standard set of terms and conditions that creators and
other rights holders may use to share original works of authorship and other material subject to
copyright and certain other rights specified in the public license below. The following considerations are
for informational purposes only, are not exhaustive, and do not form part of our licenses.

Considerations for licensors: Our public licenses are intended for use by those authorized to give
the public permission to use material in ways otherwise restricted by copyright and certain other

rights. Our licenses are irrevocable. Licensors should read and understand the terms and

conditions of the license they choose before applying it. Licensors should also secure all rights

necessary before applying our licenses so that the public can reuse the material as expected.

Licensors should clearly mark any material not subject to the license. This includes other CC­

licensed material, or material used under an exception or limitation to copyright. More

considerations for licensors.

Considerations for the public: By using one of our public licenses, a licensor grants the public
permission to use the licensed material under specified terms and conditions. If the licensor’s

permission is not necessary for any reason–for example, because of any applicable exception or

limitation to copyright–then that use is not regulated by the license. Our licenses grant only

permissions under copyright and certain other rights that a licensor has authority to grant. Use of

the licensed material may still be restricted for other reasons, including because others have

copyright or other rights in the material. A licensor may make special requests, such as asking that

all changes be marked or described. Although not required by our licenses, you are encouraged to

respect those requests where reasonable. More considerations for the public.

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and
conditions of this Creative Commons Attribution 4.0 International Public License ("Public License"). To the
extent this Public License may be interpreted as a contract, You are granted the Licensed Rights in
consideration of Your acceptance of these terms and conditions, and the Licensor grants You such rights
in consideration of benefits the Licensor receives from making the Licensed Material available under
these terms and conditions.
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Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived from or
based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the
Copyright and Similar Rights held by the Licensor. For purposes of this Public License, where the
Licensed Material is a musical work, performance, or sound recording, Adapted Material is always
produced where the Licensed Material is synched in timed relation with a moving image.

b. Adapter's License means the license You apply to Your Copyright and Similar Rights in Your
contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to copyright
including, without limitation, performance, broadcast, sound recording, and Sui Generis Database
Rights, without regard to how the rights are labeled or categorized. For purposes of this Public
License, the rights specified in Section 2(b)(1)­(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or limitation
to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which the
Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of this
Public License, which are limited to all Copyright and Similar Rights that apply to Your use of the
Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.
i. Share means to provide material to the public by any means or process that requires permission
under the Licensed Rights, such as reproduction, public display, public performance, distribution,
dissemination, communication, or importation, and to make material available to the public
including in ways that members of the public may access the material from a place and at a time
individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive 96/9/EC
of the European Parliament and of the Council of 11 March 1996 on the legal protection of
databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License. Your
has a corresponding meaning.

Section 2 – Scope.

a. License grant.
1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty­free, non­sublicensable, non­exclusive, irrevocable license to exercise
the Licensed Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and
B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with
its terms and conditions.

3. Term. The term of this Public License is specified in Section 6(a).
4. Media and formats; technical modifications allowed. The Licensor authorizes You to
exercise the Licensed Rights in all media and formats whether now known or hereafter
created, and to make technical modifications necessary to do so. The Licensor waives
and/or agrees not to assert any right or authority to forbid You from making technical
modifications necessary to exercise the Licensed Rights, including technical modifications
necessary to circumvent Effective Technological Measures. For purposes of this Public
License, simply making modifications authorized by this Section 2(a)(4) never produces
Adapted Material.

5. Downstream recipients.
A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material

automatically receives an offer from the Licensor to exercise the Licensed Rights
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under the terms and conditions of this Public License.
B. No downstream restrictions. You may not offer or impose any additional or different

terms or conditions on, or apply any Effective Technological Measures to, the
Licensed Material if doing so restricts exercise of the Licensed Rights by any
recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as
permission to assert or imply that You are, or that Your use of the Licensed Material is,
connected with, or sponsored, endorsed, or granted official status by, the Licensor or others
designated to receive attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor are
publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the
limited extent necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.
3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any
voluntary or waivable statutory or compulsory licensing scheme. In all other cases the
Licensor expressly reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:
i. identification of the creator(s) of the Licensed Material and any others
designated to receive attribution, in any reasonable manner requested by the
Licensor (including by pseudonym if designated);

ii. a copyright notice;
iii. a notice that refers to this Public License;
iv. a notice that refers to the disclaimer of warranties;
v. a URI or hyperlink to the Licensed Material to the extent reasonably
practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the
text of, or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may
be reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that
includes the required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter's License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed
Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and
Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which You have
Sui Generis Database Rights, then the database in which You have Sui Generis Database Rights
(but not its individual contents) is Adapted Material; and
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c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of the
contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this
Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the

Licensor offers the Licensed Material as­is and as­available, and makes no representations

or warranties of any kind concerning the Licensed Material, whether express, implied,

statutory, or other. This includes, without limitation, warranties of title, merchantability,

fitness for a particular purpose, non­infringement, absence of latent or other defects,

accuracy, or the presence or absence of errors, whether or not known or discoverable.

Where disclaimers of warranties are not allowed in full or in part, this disclaimer may not

apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory

(including, without limitation, negligence) or otherwise for any direct, special, indirect,

incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or

damages arising out of this Public License or use of the Licensed Material, even if the

Licensor has been advised of the possibility of such losses, costs, expenses, or damages.

Where a limitation of liability is not allowed in full or in part, this limitation may not apply to

You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in a
manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.
For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will not
terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions communicated
by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce,
limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully be made
without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall be
automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.
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c. No term or condition of this Public License will be waived and no failure to comply consented to
unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver of,
any privileges and immunities that apply to the Licensor or You, including from the legal processes
of any jurisdiction or authority.

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons may elect
to apply one of its public licenses to material it publishes and in those instances will be considered the
“Licensor.” The text of the Creative Commons public licenses is dedicated to the public domain under
the CC0 Public Domain Dedication. Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons policies
published at creativecommons.org/policies, Creative Commons does not authorize the use of the
trademark “Creative Commons” or any other trademark or logo of Creative Commons without its prior
written consent including, without limitation, in connection with any unauthorized modifications to any of
its public licenses or any other arrangements, understandings, or agreements concerning use of
licensed material. For the avoidance of doubt, this paragraph does not form part of the public licenses. 

Creative Commons may be contacted at creativecommons.org.

Additional languages available: Bahasa Indonesia, Nederlands, norsk, suomeksi, te reo Māori,
українська,  . Please read the FAQ for more information about official translations.
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Frequently Asked Questions Regarding 
IEEE Permissions 

              

 When is permission to reuse IEEE required? 
 From whom do I need permission? 
 What if I do not see the “Request Permission” link on either the Table of Contents or the 

Abstract Page in Xplore? 
 Does IEEE require individuals working on a thesis or dissertation to obtain formal permission 

for reuse? 
 If I want to republish an article in another language do I still need to obtain a license from 

IEEE? 
 How do I obtain permission to use photographs or illustrations? 
 Do I need to obtain permission to use IEEE material posted on its website? 
 Does IEEE require certain rights when requesting permission to use material in an IEEE work? 
 What is Rightslink®? 
 Is IEEE an STM signatory publisher? 

 

 

 When is permission to reuse IEEE required? 

As a general rule, IEEE requires permission be sought to reproduce any substantial part of its intellectual 
property, including any text, illustrations, charts, tables, photographs, or other material from previously 
published sources used.  IEEE also requires that all references or sources used be credited, whether or 
not permission is required. For further guidance, please contact pubs-permissions@ieee.org. 

 From whom do I need permission? 

Permission must be sought from IEEE to reuse its intellectual property. In most cases this will mean 
locating the material you wish to reuse in IEEE Xplore, where you will find a “request permission” link 
either on the Table of Contents or on the Article Abstract Page.   

 What if I do not see the “Request Permission” link on either the Table of Contents or the Abstract 
Page in Xplore? 

If you do not see a permission link on the Abstract Page, we recommend you review the front cover 
and/or the copyright page in the document itself (often, these pages are freely available for viewing in 
Xplore) in order to determine copyright owner. If you are unsure, please contact pubs-
permissions@ieee.org. 
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 Does IEEE require individuals working on a thesis or dissertation to obtain formal permission for 
reuse?  

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you 
must follow the requirements listed below: 

Textual Material  

Using short quotes or referring to the work within these papers) users must give full credit to the original 
source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.  

 
In the case of illustrations or tabular material, we require that the copyright line © [Year   of original 
publication] IEEE appear prominently with each reprinted figure and/or table.  

 
If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain 
the senior author’s approval.  

Full-Text Article 

If you are using the entire IEEE copyright owned article, the following IEEE copyright/ credit notice should 
be placed prominently in the references: © [year of original publication] IEEE. Reprinted, with 
permission, from [author names, paper title, IEEE publication title, and month/year of publication]  

 
Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your 
thesis on-line. 

 
In placing the thesis on the author's university website, please display the following message in a 
prominent place on the website: In reference to IEEE copyrighted material which is used with permission 
in this thesis, the IEEE does not endorse any of [university/educational entity's name goes here]'s 
products or services. Internal or personal use of this material is permitted. If interested in 
reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating 
new collective works for resale or redistribution, please go to 
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain 
a License from RightsLink.  
 
If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single 
copies of the dissertation. 
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 If I want to republish an article in another language do I still need to obtain a license from IEEE? 

If you are republishing IEEE intellectual property, we do require you obtain a license that includes any 
translations. The required translation disclaimer and other translation guidelines are available in the IEEE 
Terms and Conditions contained in the license provided by the Copyright Clearance Center (RightsLink 
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(2002). Lévy flight random searches in biological phenomena. Physica A: Statistical
Mechanics and Its Applications, 314(1):208–213.

Viswanathan, G. M., Buldyrev, S. V., Havlin, S., Da Luz, M. G. E., Raposo, E. P.,
and Stanley, H. E. (1999). Optimizing the success of random searches. Nature,
401(6756):911–914.

Viswanathan, G. M., Da Luz, M. G. E., Raposo, E. P., and Stanley, H. E. (2011). The
physics of foraging: an introduction to random searches and biological encounters.
Cambridge University Press.

Viswanathan, G. M., Raposo, E. P., Bartumeus, F., Catalan, J., and da Luz, M. G. E.
(2005). Necessary criterion for distinguishing true superdi↵usion from correlated
random walk processes. Phys. Rev. E, 72(1):11111.

Viswanathan, G. M., Raposo, E. P., and Da Luz, M. G. E. (2008). Lévy flights
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